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1. Introduction

The study of long-run equilibrium (cointegration) relationships between time series is one
of the core empirical devices in macroeconomic and financial research. Testing for long-run
equilibria requires long time series data, which is in turn likely to include structural breaks
induced by economic crises and local political or economic reforms. If breaks are present
but not considered in the model, tests for cointegration have low power (Perron, 2006).

As a complement to Gregory and Hansen’s (1996) test (GH test) for the null of no cointegra-
tion against the alternative of cointegration with a structural break, Arai and Kurozumi
(2007), Carrion-i-Silvestre and Sanso (2006) and Kejriwal (2008) propose the same test
statistic for the null of cointegration with a structural break (ACK test).1 Arai and
Kurozumi (2007, p. 706) state that “from the view of classical hypothesis testing, if we
are primarily concerned about cointegration with a structural break, [this] seems a more
natural choice for the null hypothesis”. Their test is an LM test which requires the es-
timation of a heteroscedastic and autocorrelation consistent error variance. To estimate
this variance, Arai and Kurozumi (2007) and Carrion-i-Silvestre and Sanso (2006) apply
the Bartlett kernel, whereas Kejriwal (2008, p. 14) does not further specify the “consistent
estimate of the long-run variance”.

Arai and Kurozumi (2007) analyze the size and power of the ACK test for two sets of data
generating processes (DGPs) where the second set is one of the standard DGPs used in
the cointegration literature since it emerged in the 1980s (by e.g. Banerjee et al., 1986,
Engle and Granger, 1987, Gregory and Hansen, 1996). Arai and Kurozumi (2007, p. 725)
conclude that the ACK test with Bartlett kernel “does not work well” on this set of DGPs
in terms of size and power.2

In this paper, we use the same standard set of DGPs and analyze the size and power of the
ACK test when using different kernels and bandwidth estimators to estimate the variance.
We arrive at a more differentiated pattern of results. We first show that Andrews’ (1991)
automated data-dependent bandwidth estimator is hardly compatible with the ACK test,
neither in its original version nor in the adjusted version in which a maximum value for
the empirical first order autocorrelation coefficient of residuals is set. To address this issue,
bandwidth estimators that only depend on the sample size (cf. Schwert, 1989) can be used.

We then compare the statistical error frequencies of the ACK and GH tests. The ACK test
appears to be more reliable in some cases, especially when the true DGP does not contain
cointegrated time series. Yet, in many cases the GH test outperforms the ACK test. The
GH test suffers from power against the presence of structural breaks in regressions of non-
cointegrated time series. We show that the application of the ACK test in turn implies a
similar problem as size distortions increase with rising break heights.

The paper is structured as follows. In Section 2, we describe the ACK test and kernels used
to estimate the long-run error variance. We then explain the model setup for analyzing the
size and power of the test. Results for the case of data-dependent automated bandwidth

1According to Arai and Kurozumi (2007), the test was independently developed by these authors and
Carrion-i-Silvestre and Sanso (2006). Arai and Kurozumi (2007, p. 707) point out that as a further contri-
bution their “theory covers both a large and small structural change” and that they also give “assumptions
in details and rigorous proof of the theorem for the unknown break point case ... for the dynamic least
squares approach”. Kejriwal (2008) generalized this test to a test of cointegration with multiple breaks.
Models of two or more breaks are not within the scope of this paper.

2Carrion-i-Silvestre and Sanso (2006) use a similar DGP to assess the performance of the test statistic.
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estimators are provided in Section 3 and for sample size-dependent bandwidths in Section
4. This section also includes the comparative assessment with respect to the GH test.
Section 5 summarizes our conclusions.

2. Description of the ACK test and model setup

The ACK test is a test for the null of cointegration with a structural break at time T1
against the alternative of no cointegration. The test statistic is based on the residuals of
the regression

yt = µi + β′ixt +
J∑

j=−J

πj∆xt−j + et if Ti−1 < t ≤ Ti (1)

for i = 1, 2, T0 = 0, T2 = T where J leads and lags of the regressor are included to
correct for potential endogeneity (dynamic OLS estimation, DOLS). The number of leads
and lags of the regressor can be determined in a specific-to-generic approach as in Arai
and Kurozumi (2007). Using this approach, J is first set to l4 = b4 ∗ (T/100)1/4c and then
reduced sequentially until an F -test shows significance of the lead and lag with the highest
order at the 10% level. The test statistic is calculated as

V =
1

T 2

∑T

i=1
S̃2
i /σ̃

2
e (2)

where S̃i = ẽ1 + · · ·+ ẽi is a sequence of partial sums of errors and σ̃2
e is a heteroscedastic

and autocorrelation consistent estimator of the long-run variance:

σ̃2
e =

∑h

j=−h
w(j, h)

1

T

∑T−j

t=1
ẽtẽt+j (3)

with kernel function w(i, h) and bandwidth h. In this paper we apply a set of commonly
used kernel functions (see Table 1). To estimate the bandwidth we use

1) automated bandwidth estimators derived by Andrews (1991) (see Table 1) and

2) sample size-dependent bandwidth estimators proposed by Schwert (1989) and Kwiat-
kowski et al. (1992): l4, l8 and l12 where lm = bm ∗ (T/100)1/4c

Table 1: Kernel functions
Kernel Kernel function w(i, h) = w(i/h) Automated bandwidth

estimator ĥ (Andrews, 1991)

Barlett =

{
1− |x| for |x| ≤ 1

0 otherwise
1.1447 ∗ (â(1) ∗ T )1/3

Uniform =

{
1 for |x| ≤ 1

0 otherwise
0.6611 ∗ (â(2) ∗ T )1/5

Tukey-Hanning =

{
(1 + cos(πx))/2 for |x| ≤ 1

0 otherwise
1.7462 ∗ (â(2) ∗ T )1/5

Parzen =


1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 0.5

2(1− |x|)3 for 0.5 ≤ |x| ≤ 1

0 otherwise
2.6614 ∗ (â(2) ∗ T )1/5

Quadratic Spectral (QS) = 25
12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
1.3221 ∗ (â(2) ∗ T )1/5

Note: â(1) = 4ρ̂2A/((1+ ρ̂A)
2(1− ρ̂A)2) and â(2) = 4ρ̂2A/(1− ρ̂A)4 where ρ̂A is the first order autocorrelation

coefficient of the residuals ẽt of eq. (1).
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Critical values of the ACK test depend on the number of regressors and the location of
the break. They are tabulated for break fractions that are multiples of 0.1 by Arai and
Kurozumi (2007, p. 717) and Carrion-i-Silvestre and Sanso (2006, p. 629-30). For other
break fractions, we simulate critical values via a discretization of the Wiener processes
involved in the asymptotic distribution of the test (cf. Arai and Kurozumi, 2007, p. 716)
by partial sums of i.i.d. normal random variables and 10.000 replications.

To analyze the size and power of the ACK test, we use the following data generating pro-
cesses which are standard in the econometrics literature on cointegration (see e.g. Banerjee
et al., 1986, Granger and Engle, 1987, Gregory and Hansen, 1996):

yt + xt = vt vt(1− L) = ε1t

yt + (2 + βt)xt + 1 = ut ut(1− ρL) = ε2t (4)

where εit are independently N(0, 1)-distributed random variables and L denotes the lag
operator. If ρ < 1, there is a linear combination of xt and yt such that the two series are
cointegrated, i.e. residuals ut are stationary. If ρ = 1, xt and yt are not cointegrated. For
this DGP, Arai and Kurozumi (2007, p. 725) report rejection frequencies larger than 0.2 for
the case ρ = 0 (theoretical size: 0.05) and for some bandwidths non-monotonous rejection
frequencies with respect to ρ and hence conclude that their test “does not work well” for this
set of DGPs. The results provided in this paper will show a more differentiated pattern.

Unless stated otherwise, we set βt = 0 for t = 1, · · · , T/2 and βt = 2 for t = T/2+1, · · · , T .
All experiments for the case of an unknown break date are replicated 1,000 times and for
the case of a known break date 10,000 times. For the former, in each replication we estimate
the break date T1 by minimizing the sum of squared residuals:

T̂1 = arg min
T1

2∑
i=1

Ti∑
t=Ti−1

[
yt − âi − b̂ixt

]2
(5)

where T0 = 0, T2 = T and âi and b̂i are least squares estimates in the respective regimes.
Kejriwal and Perron (2008) show that this estimator of the break date is consistent even
when xt and yt are non-stationary. We then compute the test statistic as described above
and compare its value with the critical value at the 5% level (nominal size) corresponding
to the break fraction λ̂ = T̂1/T .

3. Properties of the ACK test using Andrews’ (1991) bandwidth estimators

We first address the properties of the ACK test when the automated bandwidth estimators
derived by Andrews (1991) (see Table 1) are used.

Consistency of the ACK test

Arai and Kurozumi (2007) propose to restrict the parameter ρ̂A in Andrews’ (1991) auto-
mated bandwidth estimators to ρmaxA = 0.9 if ρ̂A > 0.9. In a first experiment, we illustrate
the relevance of this adjustment. Figure 1 shows the power of the ACK test for both the
non-adjusted and adjusted case with the five kernel functions considered and sample sizes
between 200 and 10,000. In the non-adjusted case, rejection frequencies do not converge
to 100%, i.e. the test is not consistent, whereas in the adjusted case they do converge.
This is explainable by the fact that the series of residuals contains a unit root under the
alternative. In this case, the bandwidth parameter h is of order T and the test statistic
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of order T/h (see Kurozumi, 2002). Hence, the test statistic does not diverge under the
alternative and is therefore not consistent if the automated bandwidth parameter is used
without any restrictions.

In the case of adjusted bandwidths, the ACK test is consistent. The speed of convergence,
however, is relatively slow. More than 4,000 observations are required to achieve a power
of more than 0.9 (see the right panel of Figure 1).

Figure 1: Power of the ACK test with automated bandwidth estimators w.r.t. sample size
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Note: in the left panel Andrews’ (1991) automated bandwidth estimates are used without adjustment (see
Table 1), in the right panel the first order autocorrelation coefficient ρ̂A is restricted to 0.9

The test statistic (2) hence depends on the additional parameter ρmaxA . We will take this
into account in the following examination of the size and power of the ACK test.

Size and power of the ACK test

We will now assess the size and power of the ACK test by varying the cap ρmaxA for the
maximum first order autocorrelation coefficient ρ̂A in Andrews’ (1991) automated band-
width estimator. Here and in the following sections, we fix the sample size at T = 200.
Tables 2 and 3 contain our results for the rejection frequencies of the ACK test under the
null hypothesis, for which we choose ρ = 0 and ρ = 0.5 (as in Arai and Kurozumi, 2007),
and under the alternative, i.e. for ρ = 1. The following conclusions can be drawn:

1) In all cases there is an over-rejection of the null. Size distortions increase with the
AR parameter ρ in the DGP (4). This observation is due to the large parameter set
attainable for ρ under the null. Rejection frequencies increase with ρ and converge to
the rejection frequency under the alternative (see also Figure 2 below).

2) For ρmaxA = 0.9 as proposed by Arai and Kurozumi (2007), the power of the test is
relatively low. For ρmaxA = 0.8 as proposed by Carrion-i-Silvestre and Sanso (2006), the
power is not considerably larger.

3) The power of the test increases with a shrinking value of the maximum first order
autocorrelation coefficient ρmaxA . In the case of positively autocorrelated time series, a
smaller bandwidth leads to smaller estimates of the long-run variance (3) and hence to
larger values of the test statistic (2) and to larger rejection frequencies.

4) In comparison with the case of a known break location, the power of the test is smaller
when the break location is unknown (cf. a corresponding finding by Arai and Kurozumi,
2007, p. 725). Here, the error incurred when estimating the location of the break has
a further impact on the power of the test. Although Arai and Kurozumi (2007) show
that the asymptotic distribution of the test statistic (2) under the null is the same in
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both the known and the unknown break case, small sample sizes lead to substantial
differences in the power of the test.3

5) The size of the test is similar for both the known and the unknown break case.

6) The choice of the kernel does not alter the results considerably. This is due to the kernel-
individual optimization of the bandwidth estimator with respect to a mean squared error
criterion (see Andrews, 1991).

Table 2: Size and power of the ACK test (automated bandwidth estimators, known break case)

ρmax
A 1.0 0.9 0.8 0.7 0.6 0.5 0.4
ρ

Quadratic Spectral kernel
0.0 0.098 0.106 0.102 0.109 0.106 0.103 0.104
0.5 0.132 0.136 0.134 0.136 0.140 0.147 0.159
1.0 0.394 0.396 0.437 0.535 0.622 0.707 0.779

Bartlett kernel
0.0 0.130 0.126 0.118 0.121 0.128 0.127 0.127
0.5 0.171 0.172 0.173 0.170 0.169 0.190 0.206
1.0 0.459 0.466 0.525 0.595 0.665 0.739 0.820

Uniform kernel
0.0 0.097 0.092 0.097 0.098 0.097 0.100 0.095
0.5 0.120 0.122 0.118 0.115 0.120 0.137 0.195
1.0 0.265 0.302 0.453 0.607 0.687 0.782 0.885

Tukey-Hanning kernel
0.0 0.116 0.114 0.108 0.113 0.108 0.116 0.107
0.5 0.141 0.139 0.144 0.139 0.131 0.162 0.200
1.0 0.397 0.356 0.445 0.555 0.644 0.751 0.850

Parzen kernel
0.0 0.107 0.114 0.103 0.112 0.108 0.114 0.108
0.5 0.131 0.133 0.138 0.134 0.141 0.147 0.175
1.0 0.439 0.399 0.429 0.509 0.611 0.682 0.784

Note: T = 200

Selection of the maximum first order autocorrelation coefficient

As seen above, reducing the value of the maximum first order autocorrelation coefficient
ρmaxA increases the power of the test. Looking at the results in Table 2, one may argue that
the selection of ρmaxA = 0.7 may be a good choice as a compromise between gains in power
and avoidance of further size distortions. However, if the true autocorrelation coefficient ρ
in the DGP (4) is larger than 0.7, size distortions will increase considerably. In Figure 2,
we illustrate rejection frequencies depending on the true value of ρ in the DGP (4) and for
each selection of the cap ρmaxA in the test statistic.4 For each value of ρmaxA , size distortions
are large for ρmaxA ≤ ρ < 1. In order to avoid additional size distortions, ρmaxA > ρ should
hold. Yet, as the true autocorrelation coefficient ρ is unknown, the selection of ρmaxA poses

3In the case that the break point estimator (5) yields a break location different from the middle of the
sample, the corresponding critical value of the test becomes larger (cf. Arai and Kurozumi (2007), Table
1) which implies a reduction of the rejection frequency of the test, cet. par.

4As the results of the unknown and known break case are qualitatively the same, we only present the
results for the known break case here. Results for other kernels than the quadratic spectral kernel do not
differ considerably and can be obtained upon request.
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a major problem for making the test practical in combination with the data-dependent
automated bandwidth estimators proposed by Andrews (1991).5

Table 3: Size and power of the ACK test (automated bandwidth estimators, unknown break case)

ρmax
A 1.0 0.9 0.8 0.7 0.6 0.5 0.4
ρ

Quadratic Spectral kernel
0.0 0.112 0.113 0.106 0.107 0.094 0.082 0.106
0.5 0.131 0.121 0.116 0.100 0.136 0.128 0.175
1.0 0.257 0.275 0.300 0.389 0.443 0.567 0.609

Bartlett kernel
0.0 0.130 0.125 0.125 0.125 0.108 0.101 0.115
0.5 0.171 0.150 0.144 0.128 0.166 0.154 0.215
1.0 0.324 0.331 0.363 0.458 0.492 0.586 0.660

Uniform kernel
0.0 0.107 0.099 0.105 0.105 0.088 0.084 0.096
0.5 0.121 0.099 0.104 0.090 0.115 0.124 0.199
1.0 0.201 0.216 0.318 0.461 0.509 0.645 0.747

Tukey-Hanning kernel
0.0 0.117 0.117 0.112 0.111 0.096 0.085 0.109
0.5 0.134 0.123 0.116 0.105 0.137 0.140 0.203
1.0 0.262 0.256 0.304 0.405 0.460 0.609 0.702

Parzen kernel
0.0 0.115 0.116 0.111 0.106 0.095 0.086 0.108
0.5 0.139 0.125 0.118 0.108 0.133 0.130 0.183
1.0 0.299 0.278 0.291 0.381 0.424 0.554 0.623

Note: T = 200

Figure 2: Rejection frequencies w.r.t. ρ in DGP (4)
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5This selection problem also arises in the univariate version of this test, the unit-root test proposed
by Kurozumi (2002). For this unit root test, size distortions also increase when the bandwidth-relevant
autocorrelation parameter ρmax

A is set below the true autocorrelation parameter ρ (see Kurozumi, 2002,
Table 3).
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4. Results of the ACK test using sample size-dependent bandwidth estimators

We now consider the sample size-dependent bandwidth estimators proposed by Schwert
(1989) and Kwiatkowski et al. (1992) denoted by l4, l8 and l12 where lm = bm∗(T/100)1/4c.

Consistency of the ACK test

For all three bandwidth estimators, l4, l8 and l12, the ACK test is consistent. Figure 3
shows that the power of the test for bandwidths l4 and l12 converges to 1 relatively fast.
For example, using bandwidth l4, the rejection frequencies under the alternative are larger
than 0.95 for sample sizes of 500 (except for the uniform kernel). The graphs for bandwidth
l8 lie in between those of l4 and l12 (not reported).

The power of the test is considerably higher when sample size-dependent bandwidth esti-
mators are used to estimate the variance which is due to smaller bandwidths. An increase
in the autocorrelation coefficient ρ in the DGP (4) does not influence the selection of
the bandwidths in this case, whereas it leads to a rise in the data-dependent bandwidth
estimators proposed by Andrews (1991).

Figure 3: Power of the ACK test with sample size-dependent bandwidths w.r.t. sample size
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Note: in the left (right) panel the bandwidth estimator l4 (l12) is used

Size and power of the ACK test

In the following, we again fix the sample size at T = 200. Table 4 contains rejection
frequencies of the test depending on the true autocorrelation coefficient ρ in DGP (4), the
kernel and the sample size-dependent bandwidth. The following conclusions can be drawn:

1) Results vary considerably with respect to the kernel. This results from the kernel-
independent selection of the bandwidth which works well only for some of the kernels.
This is in contrast to the data-dependent bandwidth estimator proposed by Andrews
(1991) which is optimized for each kernel separately (cf. Table 1).

2) Rejection frequencies increase with ρ for all kernels and bandwidths except for the
uniform kernel applied with bandwidths l8 and l12. This is a similarly unexpected
result as those shown by Arai and Kurozumi (2007, p. 725) for this DGP.

3) Increasing the bandwidth reduces the power of the test. This results from the same
argument as in conclusion 3) in Section 3.

4) Compared with the results for the data-dependent bandwidth selection (cf. Table 3),
size distortions are similarly large for the quadratic spectral kernel and the uniform
kernel here. For the other kernels size distortions are larger.
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5) For all bandwidths, using the quadratic spectral kernel rather than the uniform kernel
increases the power of the test.

In the following, we will focus on the quadratic spectral kernel. A conservative test for
cointegration would use the smallest bandwidth l4 because the error of not rejecting the
null of cointegration although it should be rejected is smaller than for bandwidths l8 and
l12.

Table 4: Size and power of the ACK test (sample size-dependent bandwidths)
Bandwidth h l4 l8 l12

ρ

Quadratic Spectral kernel
0.0 0.106 0.107 0.140
0.5 0.176 0.124 0.151
1.0 0.713 0.420 0.322

Bartlett kernel
0.0 0.132 0.118 0.121
0.5 0.248 0.167 0.164
1.0 0.801 0.541 0.413

Uniform kernel
0.0 0.103 0.179 0.308
0.5 0.111 0.140 0.280
1.0 0.527 0.265 0.216

Tukey-Hanning kernel
0.0 0.132 0.100 0.108
0.5 0.277 0.143 0.137
1.0 0.849 0.556 0.395

Parzen kernel
0.0 0.164 0.107 0.098
0.5 0.386 0.184 0.148
1.0 0.915 0.679 0.496

Comparison with size and power of the Gregory-Hansen (1996) test

We now compare the performance of the ACK test with the cointegration test proposed
by Gregory and Hansen (1996) which is often used when structural breaks are taken into
account in testing for cointegration of two time series. This test is a test for the null of no
cointegration against the alternative of cointegration with a structural break. Gregory and
Hansen suggest three different statistics but recommend the Zt statistic which “appears
best in terms of size and power” (cf. Gregory and Hansen, 1996, p. 114). We only use the
Zt statistic in this paper. Critical values do not depend on the location of the break and
are tabulated in the original paper.

Figure 4 presents the statistical error frequencies for both tests. For autocorrelation pa-
rameters ρ < 0.7, the power of the GH test is 1, yielding an error of zero, whereas the
size and hence the error of the ACK test exceeds 0.1. The error frequency graph is con-
siderably steeper for the GH test. For autocorrelation parameters close to 1, errors are
similar for both tests. The size of the GH test is 0.276 in this case which is due to the
fact that this test also has power against the presence of structural breaks in regressions
of non-cointegrated time series (see below). In sum, the GH test seems to outperform the
ACK test over the interval 0 ≤ ρ < 1, i.e. when the true DGP contains cointegrated time
series.
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Figure 4: Statistical error frequencies of the GH and ACK tests w.r.t. ρ
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Note: the graph displays the frequencies of a rejection of the null in the case that it is correct and of the
acceptance of the null in the case it should be rejected.

Monotonicity of size and power with respect to break heights

Various works discuss the undesired property of non-monotonous power or accelerating
size distortions with respect to increasing break heights (see Juhl and Xiao, 2009, for a
univariate example and Kejriwal and Perron, 2010, for a multivariate case). It is well-known
that the GH test also has power against the existence of structural breaks in regressions
of time series that are not cointegrated. To visualize this, we set ρ = 1, which is the only
value for ρ under the null of the GH test. Further, we model increasing break heights βt
for the second half of the sample ranging from βt = 0 (no break) to βt = 8. The results in
the first row of Table 5 exhibit increasing size distortions for increasing break heights.

Further, we determine the power of the GH test given an autocorrelation parameter of
ρ = 0.9 in DGP (4) and the same break heights as before. The results in the second row of
Table 5 indicate a monotonous relation of the power of the test with respect to the break
height. As we have argued before, the pure existence of a break increases the probability
of rejecting the null. This monotonous relationship is thus not unexpected.

Returning to the ACK test, we now report rejection frequencies for the same autocorrelation
parameters. The results in the third and fourth row of Table 5 show a positive relation
of the power and the size of the ACK with increasing break heights. As the break height
increases, the error in estimating the break location decreases. As discussed in conclusion
4) in Section 3, rejection frequencies are smaller in the presence of large uncertainty about
the break location. Size distortions incurred by the application of the ACK test hence
increase with the break height.

We now compare statistical error frequencies incurred by the application of both tests. In
the case of cointegrated time series, the ACK test only performs better if there is either
no break at all or only a small break in the relationship between both series (see the
left panel in Figure 5). However, testing for the presence of a structural break in the
regression of possible non-stationary series should be a prerequisite before using any of the
cointegration tests discussed here. For breaks larger than βt = 1, the GH test leads to
considerably smaller statistical errors.

For non-cointegrated time series, the GH test performs better in the presence of small
breaks (see the right panel in Figure 5). If break heights rise above βt = 2, the ACK test
leads to slightly lower error frequencies.
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Table 5: Size and power of the GH and ACK test w.r.t. break heights
βt 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Gregory-Hansen Zt test
ρ = 1.0 (size) 0.099 0.177 0.276 0.309 0.333 0.331 0.319 0.308 0.313
ρ = 0.9 (power) 0.311 0.452 0.632 0.694 0.734 0.730 0.736 0.740 0.747

ACK test (QS kernel, bandwidth l4)
ρ = 1.0 (power) 0.571 0.668 0.713 0.715 0.703 0.709 0.720 0.717 0.724
ρ = 0.9 (size) 0.383 0.541 0.618 0.629 0.636 0.630 0.626 0.635 0.642

Figure 5: Statistical error frequencies of the GH and ACK tests w.r.t. break heights

  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 1 2 3 4 5 6 7 8

Gregory-Hansen test ACK test

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 1 2 3 4 5 6 7 8

Gregory-Hansen test ACK test

Note: the left and right panel consider the cases ρ = 0.9 (cointegration) and ρ = 1 (no cointegration),
respectively.

5. Conclusions

Having tested for the existence of structural breaks in the relationship of non-stationary
time series, it seems a straightforward next step to apply a test for the null of cointegration
with a structural break against the alternative of no cointegration. Such a test was de-
veloped by Arai and Kurozumi (2007), Carrion-i-Silvestre and Sanso (2006) and Kejriwal
(2008). It complements the widely used test proposed by Gregory Hansen (1996) where
the null and alternative of the test are set in the reversed order.

The properties of the ACK test depend on the choice of the kernel and associated bandwidth
estimators for the long-run variance. In this paper, we show that the automated bandwidth
estimators proposed by Andrews (1991) are hardly compatible with this test. Sample size-
dependent bandwidths as suggested by Schwert (1989) and Kwiatkowski et al. (1992) may
be a better choice.

We showed that the GH test outperforms the ACK test in many cases. As the ACK test,
however, involves a larger degree of conservatism with respect to inferring the presence of
cointegration, especially when using the quadratic spectral kernel with Schwert’s (1989)
bandwidth l4, we recommend to use this test in combination with the GH test. Alterna-
tively, it could be complemented with standard tests for cointegration that are separately
applied in each regime before and after the break. This can also help to counter the rela-
tively large impact breaks have on the statistical errors incurred by the GH test when the
true data generating process does not involve cointegration.
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