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1 Introduction

This note presents numerical simulations computing quota rules that maximize collective
surplus for populations choosing a one-dimensional policy through bargaining and voting.
We assume that individuals have single-peaked quadratic preferences and that the dif-
ferent locations of the peaks are the only source of heterogeneity within the population.
Bargaining takes place over time. At each period, a randomly selected individual makes
a proposal which is approved if it receives the vote of a quali�ed majority; otherwise, a
new proposer is selected next period, and so on. Assuming that individual payo¤s are
discounted utilities, we have proved in Cardona and Ponsatí (2011) that this game has a
unique stationary subgame perfect equilibrium.1 Thanks to the uniqueness of the equilib-
rium, and its explicit characterization, the welfare performance of the di¤erent majority
requirements can be assessed. In Cardona and Ponsatí (2011) we supply sharp results for
the special case of symmetric populations: Assuming strict impatience unanimity is the
unique (ex-ante) Pareto optimal rule. However, when the population is not symmetric the
Pareto criterion is ine¤ective since any (super)majority may be Pareto optimal.2 In Car-
dona and Ponsatí (2012) we present a general discussion of the performance of di¤erent
quota rules in terms of their delivered collective surplus - i.e., the sum of the individual
utilities attained in equilibrium. Here, we present computations of the optimal quotas
based on the numerical simulations of the model with quadratic utilities. We carry out
this simulation exercise for a rich set of parameterizations and obtain that the optimal
quota is always rather demanding: It must be a super-majority between 80 and 95%:

2 The unique asymptotic outcome

The set up is that of Cardona and Ponsatí (2011). A group I of n individuals, n odd,
collectively selects an alternative in [0; 1]. Time is discrete. At each t = 0; 1; 2::: an
individual is selected at random (all with equal probability) to make a proposal. Then,
she chooses an alternative in [0; 1] and all other players, sequentially in any �xed order,
reply with acceptance or rejection. If acceptances are at least nq � 1; q 2 [1=2; 1] ; the
proposal is implemented and the game ends. Otherwise, the game moves to t+ 1, a new
proposer is selected, and so on. Upon a vote that approves x 2 [0; 1] at t, individual
i obtains �tu (x; i) where � 2 (0; 1) and u (x; i) = 1 � (i� x)2. Perpetual disagreement
yields zero to all agents.

Each i 2 I denotes both a generic individual and the location of her peak, so that
all the information regarding population heterogeneity is embedded in the cumulative
distribution function of peaks, denoted by F . Since we are interested in setups where n

1Existence of a Stationary Subgame Perfect Equilibrium follows from the results of Banks and Duggan
(2000). See discussion of the literature in Cardona and Ponsatí (2011).

2See Examples in Cardona and Ponsatí (2011), p. 72.
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is large, we will work with continuous cumulative distribution functions with a positive
density f on (0; 1).

In Cardona and Ponsatí (2011) we have shown that this setup has a unique stationary
subgame equilibrium (SSPE) that depends on the distribution of peaks and, in particular,
of two boundary players, say l (q) and r (q), satisfying F (l (q)) = 1� q and F (r (q)) = q.
Moreover, it is immediate that the SSPE yields a unique limit outcome as � ! 1, which
is characterized next.

Proposition 1 Unique bargaining outcome. Consider a sequence of environments
(q; F; �k), where �k ! 1. In the limit, as �k ! 1, the SSPE approval set converges to a
singleton x (q), where x (q) is the unique solution to

KF (x; q) � F (x)
ux (x; l)

u (x; l)
+ [1� F (x)] ux (x; r)

u (x; r)
= 0: (1)

The unique equilibrium outcome x (q) yields a unique payo¤ u(x (q) ; i) for each i 2 I,
which in turn induce collective bene�ts. Equipped with Eq. (1), we can address the
comparative statics for x(q) and its induced individual and collective bene�ts with respect
to q. We turn to numerical simulations to carry out this exercise next.

3 Surplus maximizing quotas: Numerical simulations

When the maximization of surplus is the welfare-maximizing criterion, a �rst best policy
xfb is an alternative that maximizes the collective surplus S (x) =

R 1
0
u(x; i)f (i) di. The

collective surplus associated to each q, via x(q), is W (q) =
R 1
0
u(x(q); i)f (i) di. Thus, the

best conceivable performance for W (q) would be delivered (if it exists) by a �rst best rule
- i.e., a quota rule qfb such that x(qfb) = xfb.

It is immediate that when u(x; i) = 1 � (x � i)2 the �rst best policy is the mean of
the distribution; i.e., xfb = � =

R 1
0
if (i) di. Hence, our simulations consist on computing

q that yield x(q) = �; that is, solving the system:

0 = F (�)
(�� l)

1� (�� l)2
� [1� F (�)] (r � �)

1� (r � �)2
;

F (l) = 1� q; (2)

F (r) = q:

It is trivial to check that in the special case of symmetric populations (i.e., f(i) =
f(1� i) for all i 2 [0; 1]), Eq. (1) yields x (q) = � = 1=2 for all q. For an asymmetric f the
bargaining outcome varies with q, and thus the value of q must be �ne tuned to attain the
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�rst best policy. Our simulations suggest that generally, �rst best rules can be achieved
through bargaining by appropriately selecting the consensus requirement. Moreover, �rst
best rules are large.

We carried out numerical simulations computing the optimal super-majority rule for
extensive parameterizations of 4 natural speci�cations of F : Two-block, Triangular, Beta
and Kuramaswamy distributions. Our numerical evaluations require the use of MatLab for
the Beta and Kuramaswamy distributions. In these cases, intervals of size � = 1=10000
are used.

As shown next, with slight di¤erences between populations, �rst best rules range from
80% to 95%. Surplus maximization requires a strict super-majority in order to avoid that
extreme players (those who su¤er high "transportation" costs) are completely excluded
from the bargaining. On the other hand, since the mass of extreme agents is relatively
low, their in�uence must be limited. Thus, the optimal rule is lower than unanimity.

We did not �nd a clear monotonicity relationship between the mass of extreme players,
measured in terms of skewness of the distribution, and the optimal rule.3 This is due to
two e¤ects that appear when increasing the skewedness of the population. First, the
�rst best policy moves away from the increased tail. Second, the boundary players also
move away from the increased tail, and so does the bargaining outcome. Hence, the total
e¤ect on the optimal rule is unclear, as it depends on the relative size of each e¤ect. In
particular, when changes in the bargaining outcome due to a change in the skewness of
the population exceed (are smaller than) the variation in the optimal policy, then the
optimal rule must be increased (reduced) accordingly, in order to weaken (strengthen)
the bargaining power of the agents in the largest tail of the distribution.

3.1 Two-block distributions

We �rst examine the optimal rules in the simple one-parameter (the median) speci�cation
of the population, where densities are constant over two-blocks with the same mass of
players each. The two-block density and cumulative distribution functions, de�ned over
[0; 1], are given by

fb(x; �) =

� 1
2�

0 � x � �
1

2(1��) � < x � 1 and Fb(x; �) =
� x

2�
0 � x � �

1� 1�x
2(1��) � < x � 1 ;

where the median is xm = � 2 [0; 1], � = (1 + 2�) =4, r (q) = � + 2
�
q � 1

2

�
(1� �) and

3The skewness of a real-valued random variable - aiming to estimate probability distribution asym-

metry - is usually measured by the third standardized moment, de�ned as E
h�

x��
�

�3i
, where � is the

standard deviation:
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l (q) = 2�(1� q). Two examples are depicted in the following �gures.
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Figure 1: fb (x; 0:2)
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Figure 2: fb (x; 0:4)

The �rst best rules, for di¤erent values of � 2 (0; 1=2), are presented in Table 1.

� = xm � = xfb qfb l r Skew:

0:1 0:3 0:82332 0:035336 0:68198 0:83181
0:2 0:35 0:83383 0:066468 0:73413 0:68491
0:3 0:4 0:84769 0:091386 0:78677 0:48993
0:35 0:425 0:85640 0:10052 0:813 32 0:37692
0:4 0:45 0:8667 0:10664 0:840 04 0:25596
0:45 0:475 0:87905 0:10886 0:866 96 0:12913
0:49 0:495 0:89081 0:10701 0:888 63 0:02598

Table 1

We observe that qfb 2 [0:8; 0:9] for any distribution. Moreover, for this speci�cation
increasing the skewness of the population, which is equivalent to decreasing the median,
reduces the optimal super-majority: Starting from the optimal rule in any given popula-
tion, the change in the optimal policy due to an increase in the skewness always exceeds
the corresponding change in the bargaining outcome. Hence, the required super-majority
must be weakened in order to decrease the bargaining power of agents in the largest tail.

3.2 Triangular distributions

The Triangular density and cumulative distribution functions, de�ned over [0; 1], are given
by
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fT (x; d) =

�
2x
�

0 � x � �
2 (1�x)
1�� � < x � 1: and FT (x; �) =

(
x2

�
0 � x � �

1� (1�x)2
1�� � < x � 1

:

We restrict, w.l.o.g., to the case where � 2 (1=2; 1]. In these cases, the median is
xm = (�=2)1=2 and � = (1 + �) =3. Moreover, l (q) =

p
(1� q) � for all q, r (q) =

p
q� if

q � � and r (q) = 1 �
p
(1� q) (1� �) if q � �. Next �gures illustrate two triangular

density functions.
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Figure 3: fT (x; 0:65)
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Figure 4: fT (x; 0:8)

The �rst best rules, for di¤erent values of � 2 (0; 1=2), are presented in Table 2.

� xm � = xfb qfb l r Skew:

0:6 0:547 72 0:533 33 0:917 65 0:222 28 0:818 51 �0:1912
0:7 0:591 61 0:566 67 0:893 25 0:273 36 0:821 04 �0:3561
0:8 0:632 46 0:6 0:882 53 0:306 56 0:846 72 �0:4761
0:9 0:670 82 0:633 33 0:885 33 0:320 97 0:892 63 �0:5447
0:95 0:689 2 0:65 0:88758 0:326 82 0:893 76 �0:5612

Table 2

Again, optimal quotas are large. However, and in contrast to the two-block case, under
Triangular distributions, the di¤erence between the change of the optimal policy and the
change in the bargaining outcome due to an increase in the skewness of the population
depends on the initial distribution. Thus, the optimal quota is not monotone in the
skewness.
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3.3 Beta distributions

The Beta distributions are characterized by two parameters �; � > 0; and o¤er a very
�exible family of speci�cations. Speci�cally, the density and cumulative distribution func-
tions, de�ned over [0; 1], are given by4

fB(x;�; �) =
x��1(1� x)��1

B(�; �)
and FB (x;�; �) =

1

B (�; �)

Z x

0

z��1 (1� z)��1 dz;

with

B(�; �) =

Z 1

0

z��1(1� z)��1dz.

While the median has no explicit form, the mean is given by � = �=(� + �), and the
mode is (�� 1) =(�+ � � 2). Two particular speci�cations are depicted next.
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Figure 5: fB(x; 2; 5)
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Figure 6: fB(x; 4; 5)

The �rst best rules, for di¤erent values of (�; �), are presented in Table 3. Now,
optimal quotas stand around 0:9. Moreover, they are not directly related to the skewness
of the distribution. Roughly speaking, the absolute value of the di¤erence between the
parameters is positively related to the skewness of the density function. Now, when
� < �, the skewness might be increased either (i) by decreasing � while maintaining �
�xed or (ii) by �xing � and increasing �. Moreover, our computations show that the
optimal super-majority rule decreases in case (i) and it increases in case (ii). Thus, while
large super-majorities are obtained in all cases, they are not monotone in the skewness.
As an illustration, consider the beta distribution with parameters (�; �) = (3; 6). The
optimal rule is 0:9146. If the skewness is increased by reducing � to 2 then the optimal

4a > 1 and b > 1 guarantee the single-peakedness of the density function.
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rule decreases to 0:9134. Instead, when the skewness increases by changing � to 7, the
optimal rules goes up to 0:9163.

� � xm � = xfb qfb l r Skew:

1 3 0:2063 0:25 0:8989 0:0349 0:5341 0:8607
2 3 0:3857 0:4 0:9028 0:1403 0:6829 0:2857
2:5 3 0:4487 0:4545 0:9048 0:1922 0:7266 0:1241
1 4 0:1591 0:2 0:9053 0:0246 0:4453 1:0498
2 4 0:3138 0:3333 0:9075 0:1074 0:5930 0:4677
3 4 0:4214 0:4286 0:9100 0:1926 0:6773 0:1814
3:5 4 0:4636 0:4667 0:9111 0:2315 0:7074 0:0820
1 5 0:1294 0:1667 0:9093 0:0188 0:3812 1:1832
2 5 0:2644 0:2857 0:9109 0:0867 0:5232 0:5963
3 5 0:3641 0:375 0:9126 0:1606 0:6094 0:3098
4 5 0:4401 0:4444 0:9142 0:2281 0:6688 0:1286
4:5 5 0:4718 0:4737 0:9149 0:2589 0:6921 0:0594
1 6 0:1091 0:1429 0:9120 0:0152 0:3331 1:2830
2 6 0:2285 0:25 0:9134 0:0726 0:4676 0:6928
3 6 0:3205 0:3333 0:9146 0:1376 0:5533 0:4066
5 6 0:4517 0:4545 0:9169 0:2541 0:6605 0:0973
5:5 6 0:4769 0:4783 0:9174 0:2795 0:6796 0:0456
1 7 0:0943 0:125 0:914 0:0128 0:2957 1:3607
3 7 0:2862 0:3 0:9163 0:1203 0:5064 0:4825
4 7 0:3551 0:3636 0:9171 0:1763 0:5677 0:3021
6 7 0:4595 0:4615 0:9188 0:2742 0:6529 0:0770
6:5 7 0:4805 0:4815 0:9192 0:2956 0:6692 0:0364

Table 3

3.4 Kuramaswamy distributions

The Kumaraswamy density and cumulative distribution functions, de�ned over [0; 1], are
given by

fK (x;�; �) = ��x
��1 (1� x�)��1 and FK (x;�; �) = 1� (1� x�)� where �; � > 0:

These distributions resemble to the Beta distributions. In particular, if x�;� is a
Kumaraswamy distributed random variable with parameters � and �, and y1;� denotes a
Beta distributed random variable with parameters 1 and �, then one has that x�;� = y

1=�
1;� .

As a comparison, Figure 7 displays a population distributed according to fK (x; 2; 8) (solid
line) and a population distributed according to fB (x; 2:7; 6) (dashed line).
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Figure 7

The �rst best rules, for di¤erent values of (�; �), are presented in Table 4. As observed,
these distributions involve large optimal quotas that stand around 90%. Again, they are
not directly related to the skewness of the distribution. For instance, when � = 5 and �
increases, so that the skewness is reduced, the optimal quota increases. However, when
� = 3 and the skewness is reduced by increasing �, we observe a reduction in the size of
the optimal quota.

� � mode xm � = xfb qfb l r Skew:

2 5 0:3333 0:3598 0:3694 0:9132 0:1341 0:6219 0:2560
2 6 0:3015 0:3303 0:341 0:9146 0:1215 0:5800 0:3132
2 7 0:2773 0:307 0:3183 0:9158 0:1117 0:5457 0:3529
2 8 0:2582 0:2881 0:2995 0:9168 0:1039 0:5168 0:3838
3 5 0:5228 0:5059 0:5007 0:9026 0:2727 0:7194 �0:1212
3 6 0:4900 0:4778 0:4743 0:8973 0:2616 0:6810 �0:0778
3 7 0:4641 0:4551 0:4528 0:8871 0:2570 0:6445 �0:0459
3 8 0:4430 0:4362 0:4347 0:8669 0:2605 0:6063 �0:0212
4 5 0:6304 0:5998 0:5884 0:9127 0:3668 0:7882 �0:3449
4 6 0:6100 0:5747 0:5648 0:91282 0:3505 0:7603 �0:3055
4 7 0:5773 0:5541 0:5454 0:91285 0:3373 0:7365 �0:2766
4 8 0:5577 0:5367 0:5288 0:9128 0:3263 0:7160 �0:2544
5 5 0:6988 0:6644 0:6504 0:9164 0:4442 0:8289 �0:4956
5 6 0:6729 0:6420 0:6294 0:9167 0:4281 0:8056 �0:4583
5 7 0:6518 0:6236 0:6119 0:9170 0:4149 0:7856 �0:4209
5 8 0:6342 0:6079 0:5970 0:9172 0:4039 0:7682 �0:4101

Table 4
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4 Conclusions

In the context of a multilateral one-dimensional bargaining game, we used numerical
simulations to analyze the performance of alternative (super)majority rules in achieving
outcomes that maximize collective surplus. Our exercise is based on the uniqueness of
equilibrium (see Cardona and Ponsatí 2011, 2012) when negotiations take place over
time through a process of alternating proposals, where the proposer is randomly selected.
For the speci�c case of uniform recognition probabilities and quadratic preferences, our
computations show that, for standard speci�cations of the population, the optimal rule is
always higher than q = 0:8 and smaller that q = 0:95.
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