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Housing bubble implications: The perspective of housing price predictability

1. Introduction

The predictability of asset price dynamics is a highly appealing issue for researchers, policy-makers
and investors. A useful signal of asset price movements facilitates risk management by protecting
investors from big losses during asset market crises. Noticeably, while the prediction of stock returns
is intensively documented by numerous studies, the literature on housing price forecasts is relatively
rare. Motivated by the recent dramatic housing boom-and-bust cycle, a growing body of literature has
been devoted to predicting asset price returns although it is always a challenge to deliver a
satisfactory forecast. Also, comparisons between in-sample and out-of-sample housing price forecasts,
and predictive differences between aggregate and disaggregate housing price returns are hardly
addressed.

Thus, this study adds to the thin literature on prediction of housing price returns by
investigating predictive powers of two potential housing price predictors, households’ expectations
and the interest rate, respectively. On the one hand, the federal funds rate is chosen to proxy for the
monetary policy shock, and it represents the economic fundamental. On the other hand, the
good-time-to-buy (GTTB) index, which is computed as the sum of 100 and the percentage difference
between responses of “buy” and “sell” in the Survey of Consumers administered by University of
Michigan, is utilized to represent households’ expectations about housing price dynamics.

Furthermore, the paper aims to extract important housing bubble implications by means of
comparing housing price forecasting abilities of these two potential predictors. As documented in
Stiglitz (1990) and Himmelberg et al. (2005), a housing bubble refers to that a high price surge is
primarily caused by investors’ unrealistic beliefs in even higher selling prices in the future rather than
economic fundamentals. Similarly, Case and Shiller (2003) document that a housing bubble occurs as
economic fundamentals fail to explain a temporary price climb which is mainly driven by peoples’
over-optimistic expectations of future housing price appreciation. Thus, households’ expectations
from the demand side have attracted considerable attention of many researchers who attempt to
explore the underlying causes of the recent bubble-like housing boom-bust cycle after the
NBER-dated recession in 2001. In addition, there has been a vast of literature which discusses the
critical roles of interest rates in driving housing price dynamics. Specifically, whether low interest
rates are attributed to the recent surge in housing prices is an ongoing debate.

Noticeably, a weak predictive power of the federal funds rate and a strong forecasting ability of
the GTTB index in housing market dynamics jointly imply high vulnerability to a bubble-like
housing cycle. As defined in the housing market literature, a housing bubble is likely to occur as the
economic fundamental fails to explain the housing asset dynamics. Although the study does not
deliver direct evidence of the existence of housing bubbles during the recent decade, it provides
informative implications of housing bubbles in the state-level housing markets.

Spotlighting the out-of-sample forecastability comparison across states, this paper utilizes three
out-of-sample predictability tests: the Theil’s U ratio, the encompassing test in McCracken (2004)
(MSE-F statistic), and the encompassing test in Clark and McCracken(2001) (ENC-NEW statistic) ,
which were employed to evaluate stock return predictability in Rapach and Wohar(2006). It examines
both the nationwide and state-level housing price return predictabilities in the sixteen most populous
US states according to 2010 population survey conducted by the U.S. Census Bureau.

The empirical findings suggest that the housing price predictive ability of the GTTB index is
generally superior to that of the federal funds rate. Besides, there are differences between in-sample
and out-of-sample predictabilities for many state-level housing markets. Moreover, the federal funds
rate displays a stronger power in predicting the nationwide(aggregate) housing price return than the
state-level(disaggregate) ones. The ENC-NEW statistic indicates that the nationwide housing price
return is predictable by the interest rate up to 5-period ahead, while the economic fundamental fails to
predict the disaggregate housing price returns in more than half of the selected sixteen state-level
housing markets. Also, importantly, there also exists a divergent predictability pattern across states.
The housing price returns in California, New York, New Jersey, Washington, Massachusetts and
Arizona exhibit unpredictability as the federal funds rate works as the predictor, but they are
forecastable as the GTTB index is used as the pred15<:8t70r.
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The paper is organized as follows: Section 2 reviews the literature which motivates this study.
Section 3 presents the housing market data and the two predictors, and it briefly outlines the
forecasting models. Section 4 reports the primary empirical findings: the predictability phenomena of
housing price returns in the nationwide and the selected 16 state-level housing markets. Finally,
Section 5 makes concluding remarks.

2. Motivation
This paper is mainly motivated by three strands of the literature: the important role of households’
expectations in the housing markets, the driving force of the interest rate in the housing
boom-and-bust cycle, and divergent forecastability patterns between aggregate and disaggregate
housing price dynamics as well as those across state-level housing markets.

First of all, both theoretical and empirical studies discuss that people’s expectation has an
important impact on housing price dynamics. The recent theoretical examples are Piazzesi and
Schneider(2009) and Sommervoll ez al. (2010), etc.; some recent empirical studies consist of Davis
and Palumbo (2008), Glaeser ef al. (2008), Huang(2012), among others. For instance, Piazzesi and
Schneider (2009) establish a search model to address that few optimistic traders are sufficient to lead
to a substantial housing price boom. Also, Sommervoll et al. (2010) develop a housing market model
with interactions among heterogeneous agents to address how housing market cycles are associated
with adaptive expectations. Concerning empirical studies, Davis and Palumbo (2008) argue that the
housing price movement is driven by the demand side much more intensively during 1998-2004 than
previous periods. Also, Glaeser ef al. (2008) suggest that self-sustaining over-optimism results in an
endogenous self-reinforcing bubble with irrational expectations. Recently, Huang (2012) proposes
that the volatility feedback effect, which reflects the dynamics of investors’ updated expectations
about housing asset returns, plays an influential role in driving the US housing price dynamics during
the post-1999 period.

Regarding the proxy for people’s expectations, Croce and Haurin(2009) propose that the GTTB
index measures the forward-looking consumer sentiment regarding housing ownership, and it is
capable of predicting the housing market dynamics which are jointly characterized by some housing
volume variables (i.e., housing permits, housing starts, new and existing home sales). Inspired by
Croce and Haurin(2009) with respect to the choice of proxy for households’ expectations, this study
further examines whether the GTTB index is also able to predict both the aggregate and state-level
housing price dynamics.

The second strand of the literature discusses whether the surge in housing prices is attributable
to persistently relaxed monetary policies after the 2001 recession. It is an ongoing debate among
policy-makers and scholars. On the one hand, Jarocinski and Smets(2008), Leamer(2007), and
Taylor(2007) all emphasize that low interest rates during 2003-2005 led to the recent housing boom.
Likewise, Edelstein and Tsang (2007), Goodhart and Hofmann(2007), Himmelberg et al.(2005), Jin
and Zeng (2004), Lai and Van Order (2010), McDonald and Stokes(2012), and Shiller(2009), all
advocate that the influential roles of interest rates in the recent remarkable housing market cycle. On
the other hand, some recent studies, which consist of Case and Shiller (2003), Campbell et al. (2009),
Dynan et al. (2006), Kuttner(2012), Mayer and Quigley (2003), Veld et al. (2011), all argue a minor
role of interest rates in the housing boom and bust. Certainly, there are alternative variables which
can proxy for the macroeconomic fundamentals. However, motivated by the vast literature which
claims the critical role of interest rates in driving the recent housing price movements, the paper
investigates the predictive power of the federal funds rate in the dynamics of housing price returns.

Finally, there exists a growing body of the literature on different dynamic patterns among
state-level housing price returns. Three representative studies are worth our more discussions. Firstly,
Negro and Otrok (2007) suggest that state-level housing markets experience considerable “local”
bubble patterns, but the recent housing boom during 2000-2005 can be regarded as a “national”
phenomenon. In addition, they argue that the influence of monetary policy shocks on housing market
dynamics is quite limited compared to considerable housing upward movements. Secondly, Rapach
and Strauss (2009) propose that housing price forecastability varies substantially across the US states.
They specify that the five states, which are California, Massachusetts, New Jersey, New York and
Washington, display remarkably different housing®pfice fluctuations from the others. Thirdly, Holly
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et al.(2010) suggest that house prices in California, New York and Massachusetts deviate from the
long-term equilibrium price more significantly than those in Connecticut, Rhode Island, Oregon and
Washington. This paper is motivated by the above representative studies in terms of the divergent
dynamic patterns of state-level housing markets, and it attempts to examine whether the
out-of-sample forecastability phenomena at state levels corresponds to the findings in the existing
literature.

3. Data and Methodology

The Freddie Mac's Conventional Mortgage Home Price Indexes (CMHPIs) are chosen to represent
the housing market dynamics because the time span of CMHPIs is longer than other alternative
housing price indexes for both state-level and aggregate housing prices at the monthly frequency. The
seasonal-adjusted housing prices are obtained by means of US Census Bureau's X-12-ARIMA
seasonal adjustment method. The Consumer Price Index(CPI) for all urban consumers: all items less
food and energy from the Department of Labor: Bureau of Labor Statistics(BLS) is used as the
deflator to have a real housing pricel. Each of the real housing price returns is computed as the log
first difference of the real housing price.

Based on 2010 state-level population data from the US Census Bureau, the study selects the
sixteen most populous states as the state-level housing markets investigated. The analyzed period
spans from 1978M1 to 2010M12 because the monthly GTTB index is available from 19782. The
descriptive statistics of the aggregate and state CMHPIs are exhibited in Table 1. The most volatile
housing markets are California, Arizona, Florida, Michigan, New York, Washington, Massachusetts,
New Jersey, ranked by their standard deviations.

Figure 1 Predictors of housing price returns:
The GTTB index (right-axis) & the federal funds rate (left-axis)
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The two chosen predictors are the interest rate and the GTTB index. The interest rate is the
effective federal funds rate which comes from the dataset of Federal Reserve Bank of St. Louis. The
GTTB (good-time-to-buy) index comes from the Survey of Consumers administered by the Survey
Research Center of University of Michigan®. It proxies for people’s expectation of housing price
returns and buying conditions of the housing markets in the US. The asked question in the survey is
“Generally speaking, do you think now is a good time or a bad time to buy a house?”. Based on the

! Prices of food and energy, which are subject to various supply shocks, are not good proxies for changes in price levels
because they are highly volatile and non-persistent. Thus, the core CPI, which is CPI for all urban consumers: all items
less food and energy, is used to represent the aggregate price dynamics in a more appropriate manner in some recent
empirical studies, such as Davis and Heathcote (2007) and Huang(2012). Similarly, Negro and Otrok(2007) use inflation
in the personal consumption expenditure basket less food and energy to obtain state-level real housing price growths.

* The quarterly GTTB index is available for the period of 195641977.

* The details of the survey are documented in Curtin (1982).
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responses to the question, the GTTB index is computed as follows:
GTTB index=100 +%Good time —%Bad time
Therefore, GTTB ranges from 0 to 200. Thus, a high GTTB index represents that people are
optimistic for expected housing asset returns. The dynamics of the two alternative predictors are
displayed in Figure 1. Noticeably, both predictors are at aggregate levels, so the empirical results
reflect the association between nationwide and state-level variables of our interest to some extent.
Based on Rapach and Wohar(2006), the model is a simple linear regression with one predictor:

Verk =0+ Pxi+ &k (1)

where y,; is the housing price return at period #+k; which is defined as the log first difference of the
real housing price; x; is the single predictor; €:x represents the forecast error. To mitigate the
concern about serial correlation in &, Newey and West(1987) standard errors of the #-statistics are
adopted.

Furthermore, to avoid size distortions (i.e., f-statistic increases along with & when testing the null
hypothesis of no predictability: f=0), the bootstrap procedure is implemented based on Kilian (1999),
Kothari and Shanken (1997), Mark (1995) and Nelson and Kim (1993) as follows:

Yi=ap+uo, (2)
X=bo+bxri+ ... +bpxiptu, 3)

where u,=(ug; u;,)’is i.i.d. with covariance matrix 2.
Equation (2) and (3) are estimated by the OLS (i.e., ordinary least squares) method and the OLS
residuals (i.e., @i, = {ﬁo,t,ﬁu}zz_p) are generated. The optimal lag order p is chosen by Akaike
information criterion (AIC) criteria, and it is restricted to the maximum order of four. The

pseudo-series of disturbance terms, {fi;}12%, are produced by T+100 times of randomly draws

from the OLS residuals. The procedures of establishing{y;,x;}i=%, and the approaches of
obtaining the empirical distribution of the in-sample z-statistic and each out-of-sample statistics
follow Rapach and Wohar (2006).

There are two out-of-sample forecasting models: the unrestricted model with non-zero £ and the
unrestricted forecast error &; 41y, as well as the restricted model with zero f and the restricted
forecast error &g ¢y. The zero f implies that the predictor lack a predictive power for the housing
price return. The whole sample is divided into two parts: period R and period 7— R. Thus, R refers to
the “sample-split” parameter because we assume the observations in the first R periods are available
to be used in the out-of-sample forecast. In this study, the total observation 7 is 396(i.e.,7=396, from
1978M1 to 2010M10); R is set to be half of the total observation 7 (i.e., R=396/2=198) as suggested
in Rapach and Strauss(2009)*.

The out-of-sample forecasts are generated recursively. The first sets of forecasts for both
restricted and unrestricted models are generated by estimating Equation (1) via OLS using the first
R-period observations. Then the fitted model is used to establish a forecasting housing price
return Py pip = A1 p + ,[?me for the unrestricted model and Vorik = Aor + BO,RxR for the
restricted model. Thus, & ik = YRk — V1ir+k> a0d &g pik = Yr+k — Yo,r+k are the forecast errors
of the unrestricted and restricted models, respectively. Next, the second set of forecasts is estimated
by means of the data available up to period R+1. Then the parameters, which are separately estimated
in the two models, and the predictor xz-; are used jointly to construct ; (g11)+x and &; gy1y4+x for

i=0 (restricted model),1(unrestricted). This process is repeated for both models and finally two sets of
. n t=T—k '
(T'—R—k—+1) recursive forecast errors, {si,H k}tzR for i=0,1, are generated.

The three out-of-sample tests consist of Theil’s U ratio, the McCracken(2004) MSE-F statistic,
and the Clark and McCracken(2001) ENC-NEW statistic. They are briefly outlined in Equation
(4)-(6). First, Theil’s U ratio compares mean squared errors of the restricted and unrestricted models:

590
* Rapach and Strauss (2009) choose half of the whole sample as R.
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.ts . MSE;
Theil’s U——M SE, 4)

where MSEFZL_,’{(E”LH k)z, i=0,1
Second, the MSE-F statistic tests the null hypothesis that the mean squared errors of the
unrestricted and restricted models are equal (i.e., MSE|=MSE,) against the alternative one that the

unrestricted MSE is smaller than the restricted MSE (i.e., MSE|<MSE,). Let dt+k=(§0,t+k)2—
(f1e4x)” and d=(T—R—k-+1Y" YTk d,,=MSEo—MSE; MSE=YT55(2; 11)". i=0.1.
The MSE-F statistic is represented as follows:
MSE-F=(T—R—k+1)d/MSE;. (5)
Third, the ENC-NEW statistic tests the null hypothesis that the restricted model forecasts
encompass the unrestricted ones, and it is of the following form:
ENC-NEW=(T—R—k+1)¢c/MSE;, (6)
where ét+k=(§0,t+k)(§0,t+k - él,t+k) and ¢=(T—R—k+ 1)-122_1]3( Cere
If the predictor has a predictive power in housing price returns and the unrestricted model

forecasts are superior to the restricted model forecasts (i.e., MSE;< MSE,), Theil’s U ratio is less
than unity, and both of the MSE-F and ENC-NEW statistics are positive.

4. Empirical Results
This section presents the main findings about housing price return forecastability as the two
alternative predictors, which are the GTTB index and the federal funds rate, are employed in the
in-sample and out-of-sample forecasts. Besides, the housing-bubble implications derived from
divergent forecastability patterns across state-level housing markets are addressed.

4.1 The GTTB index

The most important finding lies in the strong predictive powers of the GTTB index: it is capable of
forecasting the housing price returns in all the state-level housing markets except the three states:
Texas, Illinois, and Michigan (shown in Table 2, the bold statistics indicate the significant
forecastability). Noticeably, the predictive powers of the index remain significant up to the 25-year
horizon for Pennsylvania, Ohio, .North Carolina, Virginia, Washington and Indiana whose in-sample
and out-of-sample housing price returns are both forecastable. On the other hand, California, New
York and Massachusetts, which are considered to be more likely to have housing bubbles in existing
studies (e.g., Rapach and Strauss(2009), Holly, Pesaran and Yamagata (2010), among others), display
short-term forecastability because their housing price returns are only significantly predictable in less
than ten year horizons. Particularly, the in-sample forecastability only lasts for one period in New
York, and all in-sample forecasts in California are not significant.

Noticeably, there are marked differences between in-sample and out-of-sample forecastability
patterns in some states, such as California, New York, and Florida: their 5-year-ahead out-of-sample
forecasts are significant but the in-sample ones are otherwise. Moreover, the nationwide CMHPI
displays significant out-of-sample forecastability up to the 20-year horizon, but none of its in-sample
forecastability is significant. It implies robust out-of-sample tests facilitate our investigations into
housing price return forecastability while the conventional in-sample ¢-statistics fail to provide the
information. The results suggest that the two out-of-sample tests adopted in the study
(McCracken(2004) MSE-F statistic and the Clark and McCracken(2001) ENC-NEW statistic)
contribute to empirical studies on housing-price predictability. Furthermore, the results suggest that
the GTTB index not only works as a good predictor of housing volumes as Croce and Haurin(2009)
propose, but also has good performances in the out-of-sample forecasts of housing price returns.

4.2 The federal funds rate
The empirical results of the federal fund rate suggest, in contract to the GTTB index, all in-sample
forecastability patterns at the state levels are not significant except the 1-year-horizon forecast in
Michigan (shown in Table 3). Other than the three states (Texas, Illinois, and Michigan), there are
more states whose housing price returns are unpredictable for the interest rate than the GTTB index:
California, New York, New Jersey, Washington, Massachusetts and Arizona. Regarding
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out-of-sample forecasting performances, the interest rate works as a significant predictor only in the
25-year horizon out-of-sample forecast for Washington. In New Jersey, out-of-sample forecastability
remains significant up to the 3-year horizon.

The empirical findings deliver interesting monetary-policy implications. Both in-sample and
out-of-sample housing price dynamics in California, New York, Massachusetts and Arizona are not
significantly predictable through the interest rate at all horizons. Importantly, the lack of
housing-price predictability for the federal funds rate suggests weak predictive powers of monetary
policies which are adopted to stabilize the housing boom-bust cycle to some extent. Thus, the
housing markets in these four states are vulnerable to housing bubbles as the government fails to
mitigate dramatic fluctuations of housing prices. Noticeably, these four states are all considered to be
more likely to experience bubble-like price dynamics than other states by growing empirical studies.
Furthermore, the findings are consistent with the literature which attributes the recent housing
bubble-like boom-bust cycle to limited influences of monetary policies on housing price dynamics
and disconnections between housing markets and the economic fundamental.

S. Conclusion

This paper examines housing price return predictability at the nationwide and state levels from both
in-sample and out-of-sample perspectives, utilizing the GTTB index and the federal funds rate as two
alternative predictors. Specifically, two robust out-of-sample tests, the McCracken(2004) MSE-F
statistic and the Clark and McCracken(2001) ENC-NEW statistic which are employed to discuss
stock return predictability in Rapach and Wohar(2006), are adopted to evaluate our-of-sample
forecastability of housing price returns. The main contributions of this study lie in three dimensions.
Firstly, it provides confirmative evidence of stronger predictive powers of households’ expectations
than those of the interest rate in housing markets. Next, this study detects the discrepancy between
in-sample and out-of-sample forecastability for both predictors. Finally and also importantly,
consistent with the existing literature on divergent state-level housing price dynamics, the findings
indicate that some state-level markets, which consist of California, New York, New Jersey,
Washington, Massachusetts and Arizona, are more vulnerable to bubble-like housing cycles than
other sates analyzed.
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Table 1
Summary of descriptive statistics: Freddie Mac's Conventional Mortgage Home Price Indexes
(CMHPISs) of the 16™ populous states

US Califomia =~ Texas ~ New Yok Florida Illinois  Pennsylvania  Ohio Michigan Georgia  North Carolina New Jersey ~ Virginia =~ Washington Massachusetts  Indiana Arizona
CA X NY FL IL PA OH Ml GA NC NJ VA WA MAQ! IN AZ

Mean 0018 0068  -0051 0129  -0.030 -0.042 0033  -0.088  -0.093 -0.069 -0.006 0.118  0.052 0.084 0.181 -0.082  -0.053
Median 0069 0143 0009 0092 = 0.004  0.064 0.016  -0.003 = 0.082 0.041 0.049 0.091 0.091 0.127 0.128 <0023 0.055
Maximum | 1.182 2322 1443 2755 2372 2966 2.042 2.845 5707 1.953 2.135 2.824 1.434 2670 2.189 2911 3.147
Minmum | -1.510  -3.176  -3.290 -2.840  -3420 -3222  -2586  -4.040 @ -6519  -2.955 -1988  -2.089  -2.150  -3.785 -1.741 22338 -3.942
Std. Dev. | 0476 0966 = 0517 0800 0907  0.663 0.575 0.557 0.896 0.582 0.473 0735  0.638 0.785 0.754 0510 0.956
Skewness | -0.710  -0.759  -1.137 ~ 0.005  -0.752  -1220 = -0.449 = -1327  -0448  -1.164 -0.287 0.101  -0412  -0.79% 0.126 0.135  -0.341
Kurtosis | 3.609 ~ 3884 7639 4175 5083 8377 5186 13201  18.080 6.334 5.876 2.873 3.253 6.811 2.598 10317 5.194

Jarque-Bera | 39.412  50.957 440369 22777  108.880 575235  92.113  1833.123 3765.562 272746 141911  0.936 = 12255 = 281.404 3708 884503  87.113
Probability [ 0.000 ~ 0.000 ~ 0.000 ~ 0.00  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0626 0.002 0.000 0.157 0.000  0.000

Sum 7249 27114 -20.126 51.005  -11.897 -16.661 = 13262  -34731 -36.761 = -27.294 22248 46847 20421 33242 71787 -32.532 -21.002
SumSq. Dev.| 89.441  368.931 105.546 252.639 325.031 173.547 130407 122.686 317.109  133.696 88200 213275 160.631  243.644  224.645  102.538  361.132

Notes: This table lists the sample mean, median, maximum, minimum, sample SD, skewness, kurtosis, and the Jarque-Bera (JB)
statistics for the monthly housing price returns of the 16™ populous states in the US. The source of the state-level housing price
indexes is Freddie Mac's Conventional Mortgage Home Price Index (CMHPI), and the analyzed period is 1978M1-2010M12.
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Table 2 Predictability tests: the GTTB predictor
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Table 3 Predlctablllty tests: the federal funds rate predictor
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Notes: The coefficients, r-statistics, and R* are generated by the OLS method for various horizons. Theil’s U refers to the ratio of the
root-mean-squared forecast errors for the unrestricted and restricted out-of-sample forecasts. The MSE-F statistic tests the null
hypothesis that the MSE for the unrestricted out-of-sample forecast is smaller than the MSE for the restricted out-of-sample forecast.
The ENC-NEW statistics tests the null hypothesis that restricted out-of-sample forecasts encompass the unrestricted out-of-sample 1
forecasts. The numbers follow the reported statistics are the standard deviations. The bold statistics indicate the significant
forecastability.
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