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1. Introduction 

 

In the logit model the outside good option plays a crucial role because it allows for the 

possibility that consumers may change their consumption of the whole differentiated good 

category (Berry, 1994; p.247). A simultaneous price increase caused by a cost shock or a 

simultaneous decrease in quality illustrate of the importance of specifying an outside good. 

However, with aggregate data the size of the outside good is unobservable. The customary 

procedure is to pin down this variable by making an educated guess for the “market potential” 

(i.e. the number of potential purchases that could have occurred in a market). In this paper we 

illustrate the bias that can be created by an inaccurate market potential guess (both in simulation 

as well as in an empirical application) and propose a way to ameliorate it in simpler versions of 

the model.  

 

2. The Bias 

 

Why is there a Bias? 

 

We describe the problem and the proposed remedy using a version of the simple logit that 

includes one observed exogenous product characteristic (x) and price (p). We assume that in 

market t, a representative individual i’s probability of purchasing brand j is given by     

   (   )  [  ∑             ],              ; where                       
 
is the mean 

utility  and     is an unobserved product characteristic correlated with price. We follow the 

practice of studies with aggregate data and: a) normalize the utility of the outside good to zero 

(     ), and b) use observed market shares,         ∑    
 
   , in lieu of    .  As shown by 

Berry, instrumental variable treatment of     is possible through the inversion of mean utilities:  

 

                                   (1) 

 

In the absence of data for the outside good (   ), practitioners carry out estimation of (1) 

by using a ‘reasonable guess’ for the true market potential,    ∑    
 
   . Note that this is 

equivalent to formulating a guess for    . In what follows, we use the tilde notation to 

differentiate the true values (   and    ) from their “guessed” counterparts ( ̃  and  ̃  ) .  In 

other words, the outside good enters (1) with error:                   ̃   .  Equation (1) can then 

be rewritten as: 

 

                   ̃               (2) 

 

It is easy to see that the term    is a function of the outside good and thus correlated with 

the explanatory variables in     since 0 0 11/ [1 exp( )]t kt kt ktk
s x p        .

1
  Note that an 

identical argument holds for the more flexible nested logit model since equation (2) only needs a 

                                                 
1

 Using a Taylor series expansion it can be shown that the correlation between    and     is equal to 

∑ [   ((∑   
 
   )

 
   )  (

 

 ̃  
 

  )]
 
     . Therefore, the magnitude of the bias can be thought of (or analyzed) as 

in an omitted variables problem. Proof available upon request.  
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slight modification in the mean utility:                       (    )      , where    (    ) 

is the market share of each product j with respect to all products in nest g and   measures the 

correlation of utility across products in g. 

Importantly, usual IV techniques used to address the endogeneity of price (or other 

explanatory variables) will not alleviate the potential bias caused by   . Specifically, since 

instruments are chosen so that they are correlated with price and since    is also a function of 

price, such instruments will fail to be orthogonal to   .  This is clearly illustrated in the 

simulations below, where instrumentation of price does not eliminate the bias. 

 

Should We Worry About the Bias? 

 

Since it is not possible to derive an analytical expression for the bias caused by   , we illustrate 

the possible consequences via simulation.
2
 We consider 1,000 five-product markets (i.e. J=5 and 

T=1,000)
 
with        ,         and       .  Endogeneity is introduced by setting 

     ̃             and   ̃      , where  ̃         ,   ̃           ,                and 

              .
3
 The variable     is assumed to be exogenous and dichotomous (e.g. a product 

feature):      [        ] , where  [ ]  is equal to one when its argument is true. We set 

different A and B parameters for each of the five goods to allow for an asymmetric market: 

A=(2.5, 1.5, 2, 3, 3.5) and B=(0.7, 0.3, 0.4, 0.5, 0.6).   

A simulated dataset consists of 1,000 observations (T=1,000) for 5 inside goods, as well 

as the outside good.
 
The simulated data take the form of probabilities, which are then 

transformed to quantities by multiplying the shares by a constant M (for illustration purposes we 

choose M=100 for all t). We simulate 100 datasets with this parameterization and exclude q0t 

prior to estimation. Finally, for each simulated dataset, we carry out standard instrumental 

variable estimation of (1) with 400 different assumed market potentials, some smaller and some 

bigger than the true M. We denote the a
th

 assumed market potential as  ̃ .
4
 

We report four figures from this simulation. All figures report a growing  ̃  on the x-

axis. Figure 1 plots the correlation between           and    (median across the 100 datasets). 

Figure 2 reports the estimated price coefficient. Figures 3 and 4 report the estimated own-price 

elasticity for product 1 and cross-price elasticity between products 1 and 2, respectively.  

It can be seen that the correlation between           and    is always statistically different 

than zero and that it depends on the size of the assumed market potential. Further, as expected, 

this correlation depends on the sign of the coefficient of the independent variable. Also, the sign 

of the correlation switches at the true market potential because    also changes in sign at this 

threshold. 

Two patterns in figures 2 through 4 were consistently noted in other variants of this 

Monte Carlo exercise. First, the bias in the estimated price coefficient ( ) and the own-price 

elasticity tends to be moderate.  Second, the bias can be large for the cross-price elasticity.

                                                 
2
 The bias in the reported simulation is commonly observed in other variants the exercise. For example, the 

simulations in Huang, Rojas and Bass (2008) illustrate the bias in a setting similar to that of Berry. 
3
 We choose the variances of       and      so that their contribution to the variance of  ̃   is not too large.  

4
 The smallest market potential is defined by  ̃       ∑      . Each subsequent  ̃  grows by 0.5. 
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Figure 1: Correlation between    and independent variables 

for different  ̃ , with 95% confidence intervals 

 

Figure 2: Estimated   for different  ̃ , with 95% confidence 

intervals 

 
 

Note: standard IV estimation is applied throughout (i.e. 

figures 2, 3 and 4). 

 

 

Figure 3: Estimated Own-Price Elasticity for different  ̃ , 

with 95% confidence intervals 

 
Figure 4: Estimated Cross-Price Elasticity for different  ̃ , 

with 95% confidence intervals 

Practitioners could be tempted to conclude that the bias might not be worrisome if the 

price coefficient is not too sensitive to  ̃. However, the useful measure for most empirical work 

is price elasticity, precisely where the bias could be severe. A closer look at logit elasticity 

formulas (shown below) explains the noted patterns: 

 

    {
   (    )        

                      
 

Both own- and cross-price elasticities depend on the assumed market potential through 

two channels: the estimated   as well as market shares (   and   ).
5
  As it can be seen in figure 2, 

                                                 
5
 Strictly speaking    (and   ) in the elasticity formulas should correspond to predicted shares (i.e.      ̂   ̂     

 ̂     / [  ∑      ̂   ̂      ̂       ] , and not the ‘observed’ shares (i.e. qj / ̃ ).  In practice, however, 

predicted and observed shares are related to  ̃ in similar ways.  The reason for this is that  ̃ is inversely related to 
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when  ̃ is large, the estimated   is biased towards zero (and vice versa). This means that a large 

(small)  ̃ biases both elasticities towards (away from) zero. However, the effect of an estimated 

  that is biased towards (away from) zero is counteracted by a corresponding smaller (larger)    

in the case of the own-price elasticity but it is magnified in the cross-price elasticity by a 

corresponding smaller (larger)   . 

A similar situation arises with nested logit elasticities, which we display below.  

Specifically, for a given  , the bias introduced by   is magnified in both cross-price elasticity 

formulas (second and third lines in the formula) by nest shares   , which are an inverse function 

of  ̃. The opposite occurs for own-price elasticity.    

 

    

{
 
 

 
 

 

     
  (                   )        

 
 

     
      (         )                  

                                                      

 
 

To be clear, as with any simulation exercise, the patterns of the bias observed in the 

following simulation should not be interpreted as a general rule. In fact, our empirical application 

below shows that the bias could be severe for both own- as well cross-price elasticities. 

3. The Proposed Solution 

 

Our solution allows the researcher to recover an unbiased estimate of   by treating the 

unobserved outside good quantity,    , as a market fixed effect.  Specifically, one can write (1) 

as                     and difference out the unobservable: 

 

                                                                                   (3) 

     

In other words, within each market, one can arbitrarily choose any k as the “differencing” 

product and carry out estimation of (3) via standard instrumental variable methods; we call the 

estimated vector  ̂  
 , where the superscript d denotes the “differenced” nature of the data. A 

similar situation arises in the nested logit case where the right-hand side of (3) contains the 

additional term  (  (    )    (    )).  To illustrate, using (3) in our simulation above yields and 

estimate of   equal to -1.50 (s.e.=0.03). 

Our solution, however, is only partial because the parameter   , which is needed to 

compute purchase probabilities (or market shares in the aggregate version), is unidentified.  This 

is problematic because elasticities are a function of market shares.  To complete the proposed fix, 

we suggest a mechanism, based on the monotonic bias we observe, to obtain a ballpark estimate 

of market shares. Specifically, the researcher can first carry out estimation of (3) to back out the 

unbiased estimate of  ̂  
  and then search for the  ̃  that yields estimates of   and    that are 

closest to the unbiased value.   

 

 

                                                                                                                                                             

 ̂  (not shown here): a large  ̃ results in a small  ̂  and consequently in small predicted shares. Elasticities reported 

here are computed with predicted shares. 
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Specifically, we propose the following minimum distance estimator: 

 

   ̃        
 

  ̂  
      ̂  

     ̂  
      ̂  

          (4) 

 

where  ̂  
                      ,              , Y is a vector with element      

    
   

    ∑     
 
   

 , X is a matrix of explanatory variables, and Z is the usual matrix of instruments.
6
 

That is, this estimator searches for the value of M that produces the estimates that are closest to 

 ̂  
 . For statistical inference of this estimate, we rely on a bootstrap technique.

7
 Applying this 

estimator to our simulation above, we obtain a median of  ̃        with 95% confidence 

intervals of [89.13, 105.54]. 

The proposed remedy correctly identifies the unique correct market potential in our 

simulations (see figures 2 through 4). Here, identification is achieved through a feature of the 

data, as well as by functional form. First, notice that the outside good will become more 

attractive when the inside goods (as a whole category) are less attractive (for example the 

average price of inside goods is higher), and vice versa. In the data, the variation of prices and 

other characteristics of the inside products allows us to capture the relative attractiveness of the 

whole product category with respect to the outside good; this variation, although important, is 

only useful for capturing the substitution towards the no purchase category and thus, alone, 

cannot determine the size of market potential. Second, the functional form allows us to treat the 

market potential (and thus the size of the outside good) as a market fixed effect effectively 

eliminating the bias (in   and   ) that an incorrect guess might cause. A second (and more 

critical) feature given by functional form allows us to pin down the level of M: the monotonic 

relationship between the assumed market size and parameter estimates. 

The proposed solution, however, has some limitations. In our simulation, M is fixed 

across markets (by design), but in practice, this quantity could move from one market to the next. 

For example, consumers in one city may have a higher tendency to consider other product 

categories; alternatively, the product category under study has become increasingly less popular 

over time. Because of this, our proposed solution for the choice of  ̃  does not constitute a 

solution that can be readily applied to all empirical problems. 

Our approach can be relaxed to accommodate for a more “flexible” search of  ̃ thereby 

making the solution implementable in many applications. Specifically, one can specify M as a 

proportion of a variable that is likely to determine market potential across different time periods 

or over regions. For example, one could define market potential as a proportion of the total 

population in the market (e.g. Berry, Levinsohn and Pakes, 1995; Nevo, 2001) and carry out the 

search in the second step of our suggested method by changing such proportion.  The 

attractiveness of this option, besides being more in line with what one would expect in real 

markets, is that market potential varies over markets in an economically meaningful way.  

                                                 
6
 Since the coefficient on constant is not identified in (3), and therefore not contained in  ̂  

 , we exclude the 

coefficient on the constant in  ̂  
  to carry out the estimation in (4). 

7
 Specifically, we draw as many markets as we observe in the data (with replacement) and first estimate  ̂  

  using 

equation (3). Then, we estimate  ̃  using equation (4). We perform this exercise multiple times and define 

confidence intervals in the customary fashion (Wooldridge 2009, p. 223). We have worked on obtaining an 

analytical solution for the asymptotic distribution of  ̃, but we are uncertain about its existence. If feasible, we 

expect to incorporate the analytical solution in future work. 
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Table I illustrates results from this procedure using Nevo’s data. We use Nevo’s 

specification 9 from Table V in his paper and carry out regressions using different number of 

servings per week (i.e. the proportion), including 7 servings as assumed in his study.
8
 The last 

column of the table contains results of applying (3), while the second specification results from 

applying the  ̃  found when applying equation (4). For the sake of brevity, we report the 

estimates of the price and advertising coefficients, together with the corresponding median own- 

and cross-price elasticities. 

Consistent with our simulations, we observe a monotonic relationship between  ̃  and 

the estimated coefficients and elasticities. For estimation and inference of  ̃ , we apply 

(respectively) equation (4) and the bootstrap procedure described in footnote 7. This exercise 

suggests that the appropriate size of the market potential should be 2.48 servings (95% 

confidence intervals of [2.17, 2.95]) with resulting median own- and cross-price elasticities that 

are larger (in absolute value) by 81.17% and 420.8%, respectively, than those obtained with 7 

servings/week. 
 

Table I: Logit Results in Nevo’s Study, Different Market Potentials and Proposed Regression, (s.e.) 

 

 Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6 Spec. 7 

Price -59.530 

 (1.722) 

-38.096 

 (1.094) 

-25.043 

 (0.792) 

-20.799 

 (0.703) 

-19.566 

(0.679) 

-19.137 

(0.670) 

-36.905 

(0.720) 

Advertising 0.005 

 (0.005) 

0.017 

 (0.003) 

0.024 

 (0.002) 

0.026 

 (0.002) 

0.026 

(0.002) 

0.027 

(0.002) 

0.017 

(0.002) 

Median own-price 

elasticity 
-11.21 -7.21 -4.77 -3.97 -3.75 -3.67 N/A 

Median cross-

price elasticity  
0.242 0.125 0.051 0.024 0.016 0.013 N/A 

# Servings/week 2  2.53 4 7 10 12 N/A 

Estimated 

Equation 

(1)  (1)  (1)  (1)  (1)  (1) (3) 

 

4. Discussion 

 

Our results using the simple logit version suggest that large elasticity biases (both own and cross) 

can arise as a result of an inadequate assumed market potential. This can have severe 

consequences for inference.  For example, if the assumed market potential is too large in a 

merger simulation, the artificially low cross-price elasticities could lead to an underestimation of 

the post-merger price increase.   

Our proposed remedy is similar to much of the current empirical practice in which the 

researcher checks the sensitivity of results to the size of assumed market potential. The 

difference is that in our approach the researcher knows what he/she is looking for. The solution 

we propose cannot be applied in the BLP algorithm that is used for the random coefficients case 

because the measurement error in market potential enters the algorithm in a non-linear fashion. 

Although our focus is on the simple logit and nested logit versions, we believe that the proposed 

remedy can be used to generate a market potential guess in the random coefficients variant that is 

                                                 
8
 Our results are not identical to Nevo’s, but they are quite close. 
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more educated than what is dictated by the current practice.
9
 Specifically, practitioners can use 

the suggested approach in the simpler versions to obtain a ballpark estimate of the market 

potential; this guess can then be used in the full-fledged model. Our current and future work is 

aimed at extending the proposed solution to the more general model. 

 

 

  

                                                 
9
 We are currently investigating another approach, suggested by a referee, that relies on indirect inference arguments 

(see Gourieroux, Monfort and Renault, 1993). 
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