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1 Introduction

Becker and Mulligan (1997) claim that patience is a kind of capital that can be accumulated

by investment of the forward-looking household. On the other hand, Uzawa (1968) whose

formulation has been widely employed in the literature assumes that the marginal impatience

increases with the current level of consumption. We combine the ideas of Becker and Mulligan

(1997) and Uzawa (1968) in the context of a simple model of endogenous growth. We assume

that the patience capital is accumulated by the intentional investment of household but it

is decumulated by consumption activities. In the balanced-growth equilibrium, the level of

patience capital stays constant. We focus on how the level of patience capital is determined

on the balanced-growth path.

Stern (2006), Nakamoto (2009), and Erol et al. (2011) introduce the Becker-Mulligan hy-

pothesis into the neoclassical (exogenous) growth models. Stern (2006) and Nakamoto (2009)

assume that the time preference depends on the future-oriented investment, while Erol et al.

(2011) consider that the time discount rate is determined by the stock of physical capital. In

analyzing endogenous growth models, Palivos et al. (1997) use the Uzawa formulation and

Strulik (2012) assumes that the time discount rate is a decreasing function of physical capital.

Both studies assume that the rate of time discount converges to some constant levels when the

economy continues growing. Therefore, in their studies the balanced-growth characterization

is the same as that of the standard setting with a fixed time discount rate. Meng (2006)

examines an AK growth model in which the time discount rate depends on the social level

of consumption-income ratio. Although the long-run time discount rate is endogenously de-

termined in Meng (2006), his model does not follow the Becker-Mulligan hypothesis because

it is assumed that external effects exclusively determine the rate of time preference.

2 The Model

Consider a representative agent economy where there is a continuum of identical households

with a unit mass. The production technology is given by a simple AK production function

such that Y = AK, where Y is output and K denotes aggregate capital. The optimization
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problem of the representative household is given by the following:

max

Z ∞

0

e−z
C1−σ

1− σ
dt, 0 < σ < 1,

subject to

K̇ = Y − C − S − δK, 0 < δ < 1, (1)

Ḣ = φ

µ
S

C

¶
, φ0

µ
S

C

¶
> 0, φ00

µ
S

C

¶
< 0, φ (θ) = 0, θ > 0, (2)

ż = ρ (H) , ρ0(H) < 0, ρ00 (H) > 0, lim
H→∞

ρ (H) = ρ0 > 0, lim
H→∞

ρ0 (H) = 0, (3)

as well as to the given initial conditions, K (0) = K0 > 0, H (0) = H0 > 0 and z = 0 when

t = 0. Here, C is consumption, H denotes the level of patience (stock of patience capital)

and S is the level of future-oriented investment. Note that to keep the utility level positive,

it is assumed that the elasticity of intertemporal substitution (1/σ) is larger than one.

Equation (1) is the flow budget constraint. Equation (2) describes the behavior of patience

capital. We assume that investment for patience accelerates accumulation of patience capital

under a given level of consumption. A rise in the current level of consumption decreases

the effect of future-oriented investment. We also assume that to keep the patience capital

constant in the steady state, the investment-consumption ratio, S/C, should be kept constant

at a given level of θ. A smaller θ means that future-oriented investment is more efficient. As

shown in (3) , the rate of time preference is assumed to be a decreasing and convex function

of H. This assumption follows Becker and Mulligan (1997).

The Hamiltonian function for the household’s optimization problem is given by

H = e−z
C1−σ

1− σ
+ p̂ [AK − C − S − δK] + q̂φ

µ
S

C

¶
− λ̂ρ (H) ,

where p̂ > 0, q̂ > 0, and λ̂ > 0 are costate variables. The necessary conditions for an optimum

are:

max
C
H ⇒ e−zC−σ − p̂− q̂φ0

µ
S

C

¶
S

C2
= 0, (4)

max
S
H ⇒ −p̂+ q̂φ0

µ
S

C

¶
1

C
= 0, (5)

dp̂

dt
= p̂ (δ −A) , (6)

dq̂

dt
= λ̂ρ0 (H) , (7)

dλ̂

dt
= −e−zC

1−σ

1− σ
, (8)
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together with the transversality conditions:

lim
t→∞

p̂K = 0, lim
t→∞

q̂H = 0, lim
t→∞

λ̂z = 0. (9)

Define p ≡ ezp̂, q ≡ ez q̂, and λ ≡ ezλ̂. Then the above conditions are respectively

rewritten as follows:

C−σ = p+ qφ0
µ
S

C

¶
S

C2
, (40)

p = qφ0
µ
S

C

¶
1

C
, (50)

ṗ

p
= ρ (H) + δ −A, (60)

q̇

q
= ρ (H) +

λ

q
ρ0 (H) , (70)

λ̇

λ
= ρ (H)− 1

λ

C1−σ

1− σ
. (80)

3 Dynamic System

Define x ≡ λ/q, v ≡ S/C, and m ≡ C/K. Then (70) and (80) give
ẋ

x
=

λ̇

λ
− q̇
q
= − 1

1− σ

1

x
φ0 (v) (1 + v)− xρ0 (H) . (10)

From (40) and (50) we obtain

C1−σ = qφ0 (v) (1 + v) .

The abve equation presents

(1− σ)
Ċ

C
= ρ (H) + xρ0 (H) +

ψ0 (v) v
ψ (v)

v̇

v
, (11)

where ψ (v) ≡ φ0 (v) (1 + v) . Similarly, by use of (50) , (60) and (70) we can derive

Ċ

C
= xρ0 (H) +

φ00 (v) v
φ0 (v)

v̇

v
− δ +A. (12)

Solving (11) and (12) with respect to v̇/v yields

v̇

v
= ξ (v)

©
σ[ρ (H) + xρ0 (H)] + (1− σ) [ρ (H) + δ −A]ª , (13)

where

ξ (v) =

∙
(1− σ)

φ00 (v) v
φ0 (v)

− ψ0 (v) v
ψ (v)

¸−1
.
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Finally, combining (12) with K̇/K = A − δ − (C/K) (1 + S/C), we obtain the dynamic
equation of m :

ṁ

m
=
Ċ

C
− K̇
K

= xρ0 (H) +
φ00 (v) v
φ0 (v)

v̇

v
− δ +A− [A− (1 + v)m− δ] . (14)

From (13) we see that the right-hand side of (14) is a function of v, x, m and H.

To sum up, dynamic equations (10), (13) and (14), together with (2), constitute a complete

dynamic system with respect to x (= λ/q), v (= S/C), H and m (= C/K).

4 Balanced-Growth Equilibrium

In the balanced-growth equilibrium the state variables of the dynamic system stay constant

over time, and thus it holds that

Ċ

C
=
Ẏ

Y
=
K̇

K
=
Ṡ

S
= g,

q̇

q
=

λ̇

λ
= (1− σ) g,

ṗ

p
= −σg,

where g denotes a common growth rate. In addition, H stays constant, so that S = θC. The

balanced-growth rate g is given by

g = − 1
σ

ṗ

p
=
1

σ
[A− δ − ρ (H∗)] , (15)

where H∗ is the level of H on the balanced-growth path.

Condition ẋ = 0 in (10) presents

− 1

1− σ

1

x
φ0 (v) (1 + v)− xρ0 (H) = 0. (16)

Provided that ξ (v) 6= 0, condition v̇ = 0 in (13) yields

σ[ρ (H) + xρ0 (H)] + (1− σ) [ρ (H) + δ −A] = 0. (17)

Eliminating x from (16) and (17) leads to½µ
1

σ
− 1
¶
(A− δ)− ρ (H)

σ

¾2
= −φ

0 (θ) (1 + θ)

1− σ
ρ0 (H) . (18)

This equation determines the steady-state level of patience capital, H∗. Given our assump-

tions, we find that the right-hand side of (18) is monotonically decreasing in H and converges
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to zero asH goes to infinity. The left-hand side of (18) is a U-shaped function whose minimum

value is zero when H satisfies

(1− σ) (A− δ) = ρ
³
Ĥ
´
.

This means that without imposing further restrictions on functional forms of φ (v) and ρ (H),

there may exist dual steady-state levels of H satisfying (18). In what follows, we restrict our

attention to the case of a unique balanced-growth equilibrium with a positive growth rate.

As for the stability of the balanced-growth path, we can show that under a set of mild

restrictions, the balanced-growth path with a positive growth rate satisfies saddle-point sta-

bility and that there locally exists a unique converging path around the balanced-growth

equilibrium.1

5 A Remark

Since our model assumes that the level of patience capital is affected by the tension between

household’s future-oriented investment and present consumption, every factor that may affect

those two decision makings may alter the time discount rate and thus it changes the long-term

growth rate of the economy. For example, assume that the TFP of the economy, A, rises.

From (18) on the balanced-growth path with a positive growth rate it holds that

dH∗

dA
=

2
¡
1− 1

σ

¢ £¡
1
σ
− 1¢ (A− δ)− ρ

σ

¤
2
³
−ρ0

σ

´ £¡
1
σ
− 1¢ (A− δ)− ρ

σ

¤
+

φ0(θ)(1+θ)
1−σ ρ00

< 0.

Namely, a higher A accelerates households’ consumption relative to the future-oriented in-

vestment, so that the steady-state level of patience capital will decline. The impact of a rise

in TFP on the growth rate is shown by

dg

dA
=
1

σ

⎧⎨⎩
φ0(θ)(1+θ)
1−σ ρ00 − 2ρ0 £¡ 1

σ
− 1¢ (A− δ)− ρ

σ

¤
2
³
−ρ0

σ

´ £¡
1
σ
− 1¢ (A− δ)− ρ

σ

¤
+

φ0(θ)(1+θ)
1−σ ρ00

⎫⎬⎭ > 0,

implying that a higher A increases the long-term growth rate. However, the negative impact

of a higher productivity on patience of households partially offsets its positive impact on

long-term of the economy. This exercise suggests that conventional policy effect obtained in

the simple endogenous growth models should be reconsidered if we endogenize the long-run

time preference of the households.

1The detail of the stability analysis is available upon request.
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