


Economics Bulletin, 2012, Vol. 32 No. 2 pp. 1489-1494

1. Introduction

The capital asset pricing model (CAPM) plays a fundamental role in the modern �nance
theory, and its core concept is the beta coe¢ cient. In the CAPM, the market risk of a risky
asset is measured by the contribution of the asset to the overall risk of the market portfolio
and it is summarized by the beta coe¢ cient of the asset. Let rit be the excess return (over
the risk-free rate, e.g., the three-month T-bill rate) on the ith risky asset at time t and let
rmt be the excess return on the market portfolio at time t. Then the beta coe¢ cient �i for
asset i is given by

�i =
�im
�2m
;

where �im = cov(rit; rmt) and �2m = var(rmt).
Since the seminal work by Bollerslev et al. (1988), a number of studies have explored the

notion of the time-varying CAPM both theoretically and empirically (e.g., Akdeniz et al.
2003, Black et al. 1992, Bodurtha and Mark 1991, Fa¤ et al. 2000, Jagannathan and Wang
1996, and Koutmos et al. 1994). The existing time-varying models assume that all investors
and agents make predictions about future returns conditional on available information. Given
the current time t� 1, the beta coe¢ cient is a function of an information set at time t� 1
(denoted by It�1):

�i(It�1) =
�im(It�1)

�2m(It�1)
;

where �im(It�1) and �2m(It�1) are the corresponding conditional moments, that is, �im(It�1) =
cov(rit; rmtjIt�1) and �2m(It�1) = var(rmtjIt�1). These conditional moments can be easily es-
timated by some GARCH-type procedure. This raises the following question: Which variable
in the information set It�1 is in�uential on the beta coe¢ cient and, if so how is its in�uence
transmitted? However, answering this question is not obvious when the conditional beta is
de�ned as above. The reason can be heuristically seen from the following expression:

@�i(It�1)

@It�1
= ��4m (It�1)

�
�2m(It�1)

@�im(It�1)

@It�1
� �im(It�1)

@�2m(It�1)

@It�1

�
:

It is clear from the above expression that knowing the signs of @�im(It�1)
@It�1

and @�2m(It�1)
@It�1

is not

enough to determine the sign of @�i(It�1)
@It�1

. This paper proposes a new method for modeling
the beta coe¢ cient as a vector autoregressive (VAR) process in which (i) there is no need
to consider �im(It�1) and �2m(It�1) separately, (ii) the e¤ects of an exogenous variable in the
information set on the beta coe¢ cient can be determined unambiguously, and (iii) a variant
of the Granger-causality test can be implemented to check for the codependence between
individual assets�beta coe¢ cients.

2. The Autoregressive Model

We consider N risky assets and the market portfolio and assume that the rate of return on
those assets is collected in a (N +1)� 1 vector zt = (r0t; rmt)0 with rt = (r1t; r2t; :::; rNt)0. All
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available information at time t is collected in It. In addition, we assume that the distribution
of zt conditional on It�1 is given by

zt = �t + �t; (1)

�tjIt�1 � N(0; Ht);

where �t = �t(�; It�1) and Ht are the conditional mean and variance of zt, respectively. The
normality condition is imposed on �tjIt�1 only for convenience and is not essential in the
subsequent discussion. Following the methodology in Engle (2002), we specify Ht as follows:

Ht = h
1=2
t Rth

1=2
t : (2)

Here ht is the conditional variance of rmt from a univariate GARCH model given by

ht = ! +

pX
i=1

�i�
2
m;t�i +

qX
i=1


iht�i; (3)

where �mt is the error term for rmt, which is the last element of �t. The term Rt in (2) is the
conditional covariance matrix of zt relative to ht, that is, it is given by

Rt =

�
Ct �t
�0t 1

�
;

where Ct = [Cij;t] is the N � N conditional covariance matrix of rt (relative to ht) and
�t = [�it] is the N � 1 conditional covariance vector between rt and rmt (relative to ht). The
(N + 1, N + 1)-th element of Rt is 1 by construction. Here the objective is obviously �t,
which is the N�1 vector of beta coe¢ cients and is expressed as a function of the information
set It�1. There are many ways to specify the functional form of Rt (thus �t). In this paper,
we consider the following GARCH(r; s) speci�cation:

veca(Rt) = K + �Xt�1 +

rX
n=1

�nveca(Rt�n) +

sX
n=1

�nveca(_�t�n _�
0
t�n); (4)

where (i) veca(Rt) = (vech(Ct)0; �
0
t)
0; with vech(Ct) being the column-stacking operator of

the lower triangle of a symmetric matrix, (ii) Xt�1 is a k � 1 vector of exogenous variables
that are likely to in�uence �t, (iii) _�t = �t=�m;t, (iv) K is a constant vector, and (v) � =
[�ij];�n = [�ij;n];�n = [�ij;n] are the slope coe¢ cients that need to be estimated.1

The GARCH process in (4) is fairly complicated in its general form. Thus, we illustrate
some aspects of the model by considering a simple case with only two �nancial assets. When

1We note that the size of the constant vector K is 12N(N +3)�1 and that the size of � is
1
2N(N +3)�k.

On the other hand, the size of the square matrices �n and �n is 1
2N(N + 3)� 1

2N(N + 3).
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N = 2, k = 1, and r = s = 1, the process in (4) can be simpli�ed as266664
C11;t
C12;t
C22;t
�1t
�2t

377775 =

266664
K1

K2

K3

K4

K5

377775+
266664
�1
�2
�3
�4
�5

377775Xt�1 +

266664
�11 :::: �14 �15

: : : :
: : : :
�41 :::: �44 �45

�51 :::: �54 �55

377775
266664
C11;t�1
C12;t�1
C22;t�1
�1t�1
�2t�1

377775

+

266664
�11 :::: �14 �15
: : : :
: : : :
�41 :::: �44 �45
�51 :::: �54 �55

377775
266664

�21;t�1=�
2
m;t�1

�1;t�1�2;t�1=�
2
m;t�1

�22;t�1=�
2
m;t�1

�1;t�1�m;t�1=�
2
m;t�1

�2;t�1�m;t�1=�
2
m;t�1

377775 :
Using this simple case, we �rst consider the case of constant moments, that is, all the

ARCH and GARCH terms in (3) and (4) are not present (� = 
 = � = � = � = 0). Then
it is straightforward to show that (i) ht = ! = var(rmt) = �2m, (ii) �1t = K4 = �1m=�

2
m = �1;

and (iii) �2t = K5 = �2m=�
2
m = �2. Therefore, the conditional beta coe¢ cients collapse into

the original unconditional beta coe¢ cient in the static CAPM model.
We now note that possible relationships between the beta coe¢ cient and the exogenous

variables Xt�1 can be easily investigated. For example, suppose that r1t and r2t in the
above case represent the rate of return for the �nancial sector and that for the banking
sector, respectively, for a developing country. Then we can regard �1t and �2t as market
risk measures for both sectors. Suppose that we wish to estimate the e¤ects of the country�s
�nancial liberalization on these two sectors. This issue can easily be addressed within the
proposed framework. We can simply construct some indices measuring the degree of �nancial
liberalization and collect the indices in Xt�1. Then the e¤ect of �nancial liberalization on
the �nancial sector can be expressed as

@�1t
@Xt�1

= �4;

and the e¤ect on the banking sector can be similarly obtained.
The proposed method allows for what can be called �Granger-causality in market risk,�

which refers to the mechanism underlying the transmission of market risk between �nancial
assets, portfolios, and sectors. In the above simple case, one may wish to know whether the
banking sector�s market risk can be transmitted to the �nancial sector, that is, whether �1t
depends on �2t�1. In this case, the relevant null hypothesis can be formulated as �45 = 0.

3. Estimation and Inference

Let � = (�01; �
0
2)
0 be the vector of all parameters appearing in (1), (3), and (4), with �1

representing the parameters in (1) and (3) and �2 representing the parameters in (4). Note
that for the main results in this section, we do not need to assume that �tjIt�1 is normally
distributed. Even though �tjIt�1 is not necessarily normal, we can still construct the log-
likelihood function as if �tjIt�1 is normal. In this sense, the constructed function can be
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considered the quasi-log-likelihood function which is given by

L(�) = �T (N + 1)
2

ln(2�)� T
2
ln jHt(�)j

�1
2

TX
t=1

(zt � �t(�; It�1))0Ht(�)�1(zt � �t(�; It�1));

where jHt(�)j is the determinant of Ht(�). The quasi-maximum likelihood (QML) estimator
�̂ is given by

�̂ = argmaxL(�):
Assuming the standard regularity conditions in White (1994), the QML estimator is (i)
consistent for � and (ii) normally distributed in large samples as follows:

T (�̂ � �) d! N(0; D�1V D�1);

where

D = �E
�
1

T

@2L(�)
@�@�0

�
;

V = E

�
1

T

@L(�)
@�

@L(�)
@�0

�
:

If the normality condition for �tjIt�1 is indeed true, then D = V such that the asymptotic
variance of the QML estimator simpli�es to D�1, the inverse of the Fisher�s information ma-
trix. Thus, any standard inference/test procedure can be implemented using some consistent
estimators D̂, V̂ for D, V; and an LM test statistic with h restrictions is distributed as �2(h).
Depending on the values of N; p; q; r; and s, the dimension of � can be large, which may make
it di¢ cult to implement the estimation procedure. In addition, inverting the matrix Ht(�)
for each time t and for each iteration can be a daunting task if N is large. Thus, we consider
some simpli�ed cases:

1. The case of no Granger-causality case: Because of some prior belief, one may assume
that there is no Granger-causality in the system or that any Granger-causality is negligible.
In this case, �n and �n are diagonal matrices, which can reduce the number of parameters
substantially.

2. The bi-variate modeling approach: One may simply wish to examine the e¤ects of some
exogenous variables on the beta coe¢ cient without considering Granger-causality in market
risk. In this case, it is not necessary to estimate the entire system simultaneously. For each
asset i, a simple bi-variate model can be estimated using zt = (rit; rmt)0.

3. Two-step estimation: It can be convenient to estimate the univariate GARCH(p; q) model
in (3) separately. Let �̂1 be the QML estimator from the univariate GARCH(p; q) estimation.
Then, conditional on the �rst-step estimator �̂1;the quasi-log-likelihood function is maximized
to estimate �2 in the second stage. For a detailed justi�cation for this two-step procedure,
see Engle (2002) and Engle and Sheppard (2004). This two-step estimation procedure can
be applied to both the full model and the above bi-variate model.
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4. Conclusions

This paper proposes a novel model for a time-varying capital asset pricing model. The
proposed model allows individual assets�beta coe¢ cients to have a vector autoregressive
structure and the e¤ects of an exogenous variable on an asset�s beta coe¢ cient to be deter-
mined unambiguously. In addition, because of the VAR structure, a variant of the Granger-
causality test can be implemented to check for the codependence between the beta coe¢ cients
of individual assets.
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