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1 Introduction

We provide empirical evidence that highly-traded stocks may be modeled as Brownian

motions plus rare medium to large jumps as advocated early in the financial literature

(Merton, 1976). A more recent strand of the literature which argue that pure jump

processes may also be used for asset price stochastic modelling is not supported by tick-

by-tick data for our subsample of five stocks of the DJIA.

We use the recent methodology developed in Todorov and Tauchen (2010) which pro-

poses to plot the Activity Signature Function (ASF) using intraday returns of discretely

observed stochastic processes. The ASF methodology is nonparametric in essence and

thus avoids the drawbacks of estimating parameters when volatility or jump risk premia

have to be specified. This avoids assumptions about the form of these premia as noted in

Bandi and Perron (2006, p. 647): “To explicitly account for a risk premium, the existing

work relies on tight parametrizations for it.”

Our approach allows to investigate the presence of jumps of infinite activity. This is not

the case for the nonparametric approach using recent bipower variations (BPV) mea-

sures proposed in Barndorff-Nielsen and Shephard (2004, 2006) (BNS hereafter) that are

only robust to the presence of large but rare jumps. As emphasized in Andersen et al.

(2007a, p. 128) using such measures: “The main limitation is that we exclude Lévy jump

processes with infinite jump intensity, see, e.g., Carr et al. (2002), as we only allow for

“rare” jumps occurring at a finite rate. Hence, key issues are to what extent the jump-

diffusion representation is consistent with empirical data and what specific features of the

specification are necessary in order to adequately describe the observed return processes.”

This limitation strongly advocates for the use of a methodology able to consider both

finite and infinite activity jumps and, possibly, to distinguish between them. This is

precisely the objective of the ASF. Hence, we shall be able to distinguish between what

should be considered as pure diffusion, jump-diffusion or pure-jump processes.

To date, the ASF methodology has been applied to foreign exchange data and Internet
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traffic data (Todorov and Tauchen, 2010) and to S&P 500 futures and the VIX from

CBOE (Todorov and Tauchen, 2011). We are not aware of any use of the ASF for other

series and in particular for individual stocks. Using the ASF methodology, this note

investigates which stochastic processes are more plausible with data in hands.

Identifying jumps in a stochastic process is important because it has implications for risk

management, option pricing, portfolio selection and also has consequences for optimal

hedging strategies.1 Indeed, when computed using simulation techniques, the quantiles

sensibly differ when draws are from a continuous or continuous plus jump distribution.

Similarly, portfolio selection can be dramatically modified when some assets in the in-

vestment universe are potentially jumping. Liu, Longstaff and Pan (2003) study the

implications of jumps in both prices and volatility on investment strategies when a risk-

free asset and a stochastic-volatility jump-diffusion stock are the available investment

opportunities. Cvitanić, Polimenis and Zapatero (2008) propose a model where the asset

returns have higher moments due to jumps and study the sensitivity of the investment in

the risky asset to the higher moments, as well as the resulting utility loss from ignoring

the presence of higher moments (see also Äıt-Sahalia et al. (2009)).

As for option derivatives pricing, early attempts to include jump in stochastic models for

security prices are Merton (1976), Ball and Torous (1983), Jorion (1988) and Kaushik

(1993) among others. The authors show how to value derivative securities considering

that a jump may arise following a given distribution for the jump size and a given distri-

bution for jump arrivals rate. Note that stochastic volatility and jumps are not redundant

features (see the discussion in Cont and Tankov (2004)). Indeed, while both these charac-

teristics allow to better consider the excess kurtosis (fat-tails) present in the distribution

of returns, they do not have the same impact on option prices (see Ball and Torous (1985),

Bakshi et al. (1997), Cont and Tankov (2004), Jiang (2007) or Wu (2008)).

Our preliminary results point to the relevance of the Brownian motion for modelling the

individual stock prices, at least for the five stocks under investigation. In addition, rare

1The impact of jumps in returns and volatility is studied in Andersen et al. (2002), Eraker et al. (2003),
Chernov et al. (2003), Eraker (2004), Broadie et al. (2007). A risk premium (jump risk premium) can
be raised in reference to jumps (Pan, 2000).
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jumps of medium to large size would help to fit the data better as note previously in

the thorough analysis by Andersen et al. (2010). The authors rely on the nonparametric

approach of BNS (2004, 2006) and Andersen et al. (2007b) and provide empirical evidence

of the existence of jumps in individual stocks of the DJIA index. We complement their

findings by using a method, the ASF, which is also suited for infinite activity jumps.

The plan for this paper is as follows. The next section presents briefly the methodology

in Todorov and Tauchen (2010) and Section 3 provides a description of the data as well

as our empirical results. The last section gives a number of implications of our results

and some ideas for future research.

2 The activity signature function (Todorov and Tauchen, 2010)

The ASF methodology allows to associate an activity index to any continuous-time pro-

cess. This is an extension of the Blumenthal-Getoor (1951) index which is indicative

of the vibrancy of a stochastic process but, contrary to the latter, the ASF is valid for

all stochastic processes and not only for pure-jump processes.2 In short, Todorov and

Tauchen (2010) propose to compute the logarithm of the sum of power variations for

different values of the power argument and show that the ratio of the this sum for two

different sampling frequencies has interesting properties. In particular, the value of this

ratio above two and below two allows to detect the presence of a Brownian component.

Powers below two will give a stronger role to the continuous component while powers

above two will emphasize the jump component. We refer the reader to the original article

by Todorov and Tauchen (2010) for further details of the methodology which is based on

limit theorems for power variations.3

We enhance the original ASF in Todorov and Tauchen (2010) by relying on a two-scale

methodology as in Zhang et al. (2005). In short, we keep a sampling interval for intraday

returns of 5 minutes as in in the bulk of the literature using this kind of data but we

2See also Aı̈t-Sahalia and Jacod (2009) or Lee and Hannig (2010) who propose related tests.
3Todorov and Tauchen (2011) provide a very clear and more accessible presentation of their ASF when
examining the stochastic process underlying the VIX index.
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sample with starting points at each minute. Thus we have 5 more estimates of the ratio

at each period and an average of these ratios provides much more robust results. To be

more precise, let

V (p,∆n) =

n∑

i=1

|ri|
p

be the sum of intraday returns ri in absolute value at the sampling frequency 1/n (con-

versely the sampling interval is ∆n). The returns in absolute value are taken at a power

p thereby the notation V (p,∆n). A particular case of power variations is when p = 2

which corresponds to the so-called realized variance. Todorov and Tauchen (2010) show

that considering other values for p has interesting properties and suggest to compute the

ratio

b(p,∆n) =
ln(2)p

ln(2) + ln[V (p, 2∆n)]− ln[V (p,∆n)]

for different values of p going from zero to four. For a given p, b(p,∆n) mainly compare

the values of V (p, .) for two different sampling intervals ∆n and 2∆n. This ratio is

computed for different intervals of observations going from 1 day to 22 days (one trading

month). Information about the stochastic process we are interested in can be inferred

from quantiles of the distribution of these values. Todorov and Tauchen (2010) define the

QASF as:

Bα(p,∆n) = Quantileα[b(p,∆n)]

Using the QASF allows to limit the impact of extreme realizations while keeping a re-

liable idea of the behavior of b(p,∆n) over the different periods of observations. More

importantly, QASF plots will help to draw conclusions about the nature of the stochas-

tic process which is likely to drive stock returns. Several cases are noteworthy. For a

Brownian motion the activity index is two no matter the power p considered. In case
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of a Brownian motion plus jump process, the activity index is two for p < 2 and p for

p > 2. Finally, for a pure-jump process, the QASF should be decreasing for some powers

p ∈ (0, 2] thereby indicating a lower activity level than for a continuous semimartingale.

The examination of the QASF thus allows to discriminate between several models of the

stock returns dynamics.

3 Empirical findings

3.1 Data

Our data set includes five individual stocks from the New York Stock Exchange (NYSE):

Citigroup Inc., General Electric Co., IBM, McDonald’s Corp. and Walt Disney Co..

These are highly liquid stocks which are part of the DJIA Index. Data is extracted from

the Trades and Quotes (TAQ) database of NYSE and are in the form of quotes (bid and

ask) with time stamps. We only retain quotes recorded in the officiel trading period (9:30

EST to 16:00 EST) and compute mid-quotes as representative of the efficient price. We

remove days with a shortened trading period thus resulting in a set of 1118 days over the

period July 2, 2001 to December 30, 2005 for each stock.

3.2 Empirical findings

Figures of QASF for all five individual stocks are plotted in Figures 1 to 10. The horizontal

axis is for the power p. As noted above, the interesting p to be considered are between

zero and four. We thus plot the QASF on this interval. The vertical axis is for the

QASF, i.e. the quantiles of the b(p,∆n) which provides a measure of the activity of the

stochastic process as can be inferred from observed (discrete) intraday data. To enhance

robustness of our results, for each stock, we provide eight representations of the QASF

which is itself a plot of the lower and upper quartiles as well as the median. We let the

sampling frequency to vary from 5 to 10 minutes and we adopt blocks of different lengths

(1, 5, 10 and 22 days).

From Figures 1 to 10, we observe that the median is most of the time a flat function of the
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power p at a constant value of two. As indicated in Section 2, this is expected for a very

vibrant process such as a Brownian motion (see Todorov and Tauchen (2010) Theorem

1.(a)). The case of General Electric Co. is perhaps the less conclusive as the median is

not as flat as it should be for a continuous semimartingale without, nevertheless, making

this assumption unlikely.

Interestingly, the observation of the upper quartile indicates that in most cases, medium

to large jumps are part of the process and should be considered when modeling individual

shares. Indeed, for power p above two, the upper quartile is often increasing in p which

is an indication of the impact of jumps. The intuition behind the argument for this

conclusion is that larger increments (intraday returns) such as jumps have a larger impact

when considered at a power p > 2. Importantly, this conclusion is valid for all the five

stocks under investigation and confirms the findings in Andersen et al. (2010).

4 Implications and concluding remarks

Our empirical results point to the fact that a Brownian motion plus jumps could be a

good proxy for modelling asset prices thereby invalidating underlying pure jump processes

theories. This validate the early model of Merton (1976) which is an extension of the

Black-Scholes framework allowing for (rare) jumps.

A first implication of this result is that pure-jump processes are not plausible candidates

for modeling stock returns. Among many others, are the models of Barndorff-Nielsen

(1997), Barndorff-Nielsen and Shephard (2001), the CGMY model by Carr et al. (2002).

This is good news for derivatives pricing as in the presence of jumps, usual dynamic

hedging arguments fail and markets are fundamentally incomplete (see Cont and Tankov,

2004) leading to complicated pricing formulae. The Merton’s (1976) framework also leads

to incompleteness but in a more tractable way than in a pure-jump process.

A second implication of our results relate to our understanding of the fine structure of asset

prices. Indeed, microfounded theories in Geman et al. (2000) or Pakkanen (2010) among

others, describe the price of assets as being pure jump processes. This result arises from
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market clearing conditions, the arrival of news which is discrete by nature and the trading

behavior of investors who trade on news. Our results thus point to the fact that trading

activity in highly traded stocks such as the five individual stocks under investigation in

the present paper is sufficient to deliver evidence of activity level of a Brownian motion. It

has to be noted that our empirical results involve highly traded individual stocks and may

not be generalized straightforwardly to less liquid shares. Indeed, following the theoretical

analysis in Pakkanen (2010), one may wonder whether the trading activity in less liquid

shares would be sufficient for the stochastic process to appear as a Brownian motion.

This remains an empirical question which would necessitates a rigorous comparison of

the ASF for shares of different liquidity and this work is beyond the scope of the present

note.

Recent analysis by Cont and Mancini (2009) and Äıt-Sahalia and Jacod (2010) comple-

ment the Todorov and Tauchen’s (2010) framework. The main aim of these papers remain

to use the jump activity index to discuss the relevancy of considering jumps to model

asset returns and these methodologies may be used to confirm and extend our results.

Nevertheless, we believe that the next research step would be to relate the level of trading

activity to the activity index thereby enhancing further our understanding of the price

formation of asset returns.
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Figure 1

QASF for Citigroup Inc. for the period July 2, 2001 to December 29, 2005. QASF
is computed using 5 and 10 minutes sampling intervals and blocks of 1, 5, 10 and
22 days.
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Figure 2

QASF for Citigroup Inc. for the period July 2, 2001 to December 29, 2005. QASF
is computed using 2.5 and 5 minutes sampling intervals and blocks of 1, 5, 10 and
22 days.
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Figure 3

QASF for General Electric Co. for the period July 2, 2001 to December 29, 2005.
QASF is computed using 5 and 10 minutes sampling intervals and blocks of 1, 5, 10
and 22 days.
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Figure 4

QASF for General Electric Co. for the period July 2, 2001 to December 29, 2005.
QASF is computed using 2.5 and 5 minutes sampling intervals and blocks of 1, 5,
10 and 22 days.
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Figure 5

QASF for IBM for the period July 2, 2001 to December 29, 2005. QASF is computed
using 5 and 10 minutes sampling intervals and blocks of 1, 5, 10 and 22 days.
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Figure 6

QASF for IBM for the period July 2, 2001 to December 29, 2005. QASF is computed
using 2.5 and 5 minutes sampling intervals and blocks of 1, 5, 10 and 22 days.
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Figure 7

QASF for McDonald’s Corp. for the period July 2, 2001 to December 29, 2005.
QASF is computed using 5 and 10 minutes sampling intervals and blocks of 1, 5, 10
and 22 days.
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Figure 8

QASF for McDonald’s Corp. for the period July 2, 2001 to December 29, 2005.
QASF is computed using 2.5 and 5 minutes sampling intervals and blocks of 1, 5,
10 and 22 days.
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Figure 9

QASF for Walt Disney Co. for the period July 2, 2001 to December 29, 2005. QASF
is computed using 5 and 10 minutes sampling intervals and blocks of 1, 5, 10 and
22 days.
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Figure 10

QASF for Walt Disney Co. for the period July 2, 2001 to December 29, 2005. QASF
is computed using 2.5 and 5 minutes sampling intervals and blocks of 1, 5, 10 and
22 days.
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(Eds.) Handbooks in Operation Research & Management Science, vol. 15, Elsevier.

Zhang, L., Mykland, P.A., Aı̈t-Sahalia, Y., 2005. A tale of two time scales: determining integrated

volatility with noisy high frequency data. Journal of the American Statistical Association 100, 1394-1411.

3152


