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1. Introduction

The estimation of volatility using high-frequency data has attracted considerable interest
in the literature. The most commonly employed estimator is realized volatility (RV),
which is the cumulative squared intraday returns. Andersen et al. (2010) provide a
comprehensive summary of previous research using RV.

In the current paper, we consider the consistent estimation of integrated volatility
(IV) in the presence of jumps. It is important to note that RV is inconsistent when
jumps exist in the price process. To construct a consistent estimator of IV, we focus
on realized absolute variation (RAV), calculated from intraday absolute returns. RAV
is known to predict volatility satisfactorily because of its robustness for jumps. Since
Andersen et al. (2007) first showed that the jump component of volatility does not affect
volatility forecasting, RAV has appeared frequently in the volatility forecasting literature,
including Ghysels et al. (2006) and Forsberg and Ghysels (2007). However, RAV (or its
square) is an inconsistent estimator of IV, even though it is robust with regard to jump
effects, as shown in a later section here.1

We propose a new absolute value based volatility estimator as a natural extension of
RAV and show its consistency and asymptotic normality in the presence of jumps.

Barndorff-Nielsen and Shepard (2004, 2006) also have proposed a well-known jump-
robust volatility estimator, called bi-power variation (BPV). We show that our estimator
is asymptotically more efficient than BPV.

We analyze a simulation to assess the finite-sample behavior of our proposed estimator
and compare its performance against alternatives. In the simulation, we generate artificial
price data for general stochastic volatility models with and without jumps. Further,
we compare the accuracy performance of our estimator to that of alternatives using
computational bias and MSE at sampling frequencies normally used in practice.

The remainder of this paper is organized as follows. In Section 2, we introduce our
theoretical framework and show the main results of this paper. We analyze a simulation
to assess our theoretical results in Section 3. Section 4 concludes the paper.

2. Setup and Main Results

Assume that the logarithmic price process p(t) is determined by the stochastic differential
equation (SDE)

dp(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t),

where σ(t) is the spot volatility process and W (t) is a standard Brownian motion. Fol-
lowing the literature, we assume that σ(t) is cadlag, as in most major volatility models.
dq(t) is a counting process with intensity λ, and κ(t) is the jump size at time t.

Our target, IV, is defined as follows:

IVt =

∫ t

0

σ2(s)ds.

1Forsberg and Ghysels (2007) offer an interesting theoretical explanation of RAV improvements in
volatility forecasting despite RAV being an inconsistent estimator.
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We now consider the estimation of IVt from an observable price process. Suppose
that we observe M intraday prices, pt,1, pt,2, ..., pt,M at t1, t2, ..., tM . The tth day RV,
denoted RVt, is defined as

RVt =
M∑
i=1

r2
t,i, (1)

where rt,i = pi,t − pi,t−1. It is well known that RVt is an inconsistent estimator for IVt in
the presence of jumps:

RVt
−→

M→∞ IVt +
∑

s∈[0,t]:dq(s)=1

κ2(s).

The first order power variation, RAV, is defined as

RAVt = µ−1
1 M−1/2

M∑
i=1

|rt,i|, (2)

where µ1 =
√

2
π
.

As shown in Barndorff-Nielsen and Shephard (2003), RAV is robust for jump effect
and if M → ∞,

RAVt
−→

M→∞

∫ t

0

σ(s)ds.

However, it is obvious that, as a special case of Cauchy–Schwarz inequality,(∫ t

0

σ(s)ds

)2

≤ IVt;

thus, RAV 2
t is not a consistent estimator of IVt.

We introduce two-step realized volatility (TRV) as a consistent estimator of IVt. Our
idea is as follows. We first partition the interval [0, t] into m subintervals such that the
ith subinterval includes the ni returns and define n = min(ni). Next, we calculate RAV
in each subinterval (rav1, ..., ravm). As n → ∞, these converge to integrals of σ(t) over
the respective subintervals. (The summation

∑m
i ravi clearly is equal to RAVt.) Finally,

TRV is calculated as the sum of the squares of ravi.
More precisely, TRV is defined as

TRVt,α =
1

Mµ2
1

m∑
i=1

q2
t,i, qt,i =

1

ηi

ni∑
j=1

|rt,νi−1+j|, (3)

where m and ni are positive integers, determined to satisfy M =
∑m

i=1 ni, m = O(M1−α)

and ni = O(Mα), where α ∈ (0, 1). νi =
∑i

k=1 nk, ν0 = 0 and ηi = tνi
− tνi−1

.

Theorem 1 TRVt,α converges to IVt in probability.

TRVt,α
−→

M→∞ IVt.

Proof. The proof is given in the Appendix.
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Theorem 2 TRVt,α asymptotically converges to a normal (mixture) distribution. That
is, as M → ∞,

TRVt,α − IVt

(M−1VtrvIQt)
1/2

∼ N(0, 1),

where Vtrv = 4(µ−2
1 − 1) and IQt =

∫ t

0
σ4(s)ds.

Proof. The proof is given in the Appendix.

Remark 1 TRV is asymptotically more efficient than BPV. As shown in Barndorff-
Nielsen and Shephard (2003), the asymptotic distribution of BPV is

BPVt − IVt

(M−1VbpvIQt)
1/2

∼ N(0, 1),

where BPVt = µ−2
1

∑M−1
i=1 |rt,i||rt,i+1| and Vbpv = µ−4

1 +2µ−2
1 −3 ' 2.6090, which is larger

than Vtrv = 4(µ−2
1 − 1) ' 2.2832.

3. Simulation

3.1 Simulation design
This section reports the results of Monte Carlo simulation experiments carried out to
analyze the relative performance of the proposed estimator compared to alternatives. In
addition to calculating RV and TRV, we compute BPV, proposed by Barndorff-Nielsen
and Shephard (2004), which is also a consistent estimator in the presence of jumps. BPV
is defined as

BPVt = µ−2
1

M

M − 1

M−1∑
i=1

|rt,i||rt,i+1|. (4)

First, we generate the artificial data from the following SV model:

dp(t) = µt + σ(t)dW1(t) σ(t) = exp(β0 + β1τ(t)) (5)

dτ(t) = θτ(t)dt + dW2(t) Corr(dW1, dW2) = ρ, (6)

where ρ is a leverage parameter. This model is common in the literature; for example,
see Huang and Tauchen (2005), Barndorff-Nielsen et al. (2008), and Podolskij and Vetter
(2009). Following the above literature, we set parameter values of (5) and (6) as µ = 0.03,
β0 = 0.3125, β1 = 0.12, θ = −0.025, and ρ = −0.3. We set the time interval to
[0, 1] for simplicity. Sample paths of Equation (5) are generated using Euler–Maruyama
discretization with time step 1/23400; thus, [0, 1] spans 6.5 hours (from 9:30 to 16:00).
Further, we construct sparse sampled returns as p1/M − p(i−1)/M and compute the bias
and MSE of RV, BPV, and TRV for M = 39, 78, 130, 390, 780, 2340, 4680, and 23400.
For example, the case of one minute returns is M = 390 in this setting. As the results
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of TRV, we compute the bias and MSE of TRV with α = 0.5.2 Thus, m = ni =
√

M for
all i.3 The results are summarized in Table 1.

Second, we examine the performance of the estimation in the presence of jumps.

dp(t) = µt + σ(t)dW1(t) + ζ(t)dq(t), (7)

where ζ(t) is the jump size, which we set as N(0, h)-distributed with h = 0.20. We chose
the value of h to produce an average jump contribution of 14% of IV, on the basis of
the empirical results of the S&P 500 stock index by Andersen et al. (2007). dq(s) is a
counting process with intensity λ, which we set as λ = 1. The volatility model and its
parameters are the same as in the no–jump case. The results are reported in Table 2.

3.2 Results
Table 1 reports the biases and RMSEs of all three estimates for the no jump case. The
biases are generally very low and seem to be lower for higher sampling frequencies. The
RMSEs are lower if higher sampling frequencies are used, which was to be expected.
From Table 1, we can conclude that, as expected, RV performs best in the no–jump case.
In addition, we observe that our estimator is more efficient than BPV in terms of RMSE,
which corroborates the asymptotic theoretical result.

Table 2 reports the biases and RMSEs of all three estimates with jumps. We observe
that RV has serious bias problems if jumps exist. The biases of TRV and BPV shrink,
whereas RV has similar positive biases for all M , corroborating the asymptotic theoretical
result. We observe that our estimator outperforms BPV in terms of RMSE in all cases.
This observation further, agrees with the asymptotic theoretical result.

Table 1: Monte Carlo comparison of the bias and RMSE of RV, BPV, and TRV for the
SV model in the no–jump case. (The number of replications is 8000.)

Bias in ˆIV RMSE of ˆIV
M (Sampling frequency) RV BPV TRV RV BPV TRV
39 (10 min) -0.0002 -0.0321 -0.0045 0.4492 0.5021 0.4797
78 (5 min) -0.0012 -0.0196 -0.0324 0.3130 0.3530 0.3334
130 (3 min) 0.0004 -0.0103 -0.0458 0.2417 0.2714 0.2570
390 (1 min) 0.0020 -0.0008 0.0060 0.1374 0.1578 0.1481
520 (45 sec) 0.0005 -0.0017 -0.0039 0.1186 0.1364 0.1276
780 (30 sec) 0.0015 -0.0001 -0.0178 0.0958 0.1099 0.1046
2340 (10 sec) 0.0006 -0.0002 -0.0065 0.0552 0.0632 0.0597
4680 (5 sec) 0.0007 0.0005 -0.0062 0.0392 0.0448 0.0423
23400 (1 sec) 0.0003 0.0003 -0.0041 0.0178 0.0203 0.0195

2We also compute TRV with different settings of α, and find that α = 0.5 gives the most efficient
and unbiased estimates in our simulation comparison. Hence, we report only the results derived by
employing this setting. All simulation results are available upon request.

3If
√

M is not an integer, we set m = [
√

M ], n1 = M−(m−1)[M/m] and ni = [M/m] for i = 2, ...,m,
where [·] denotes the floor function.
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Table 2: Monte Carlo comparison of the bias and RMSE of RV, BPV and TRV of for
SV model with jumps. (The number of replications is 8000.)

Bias in ˆIV RMSE of ˆIV
M (Sampling frequency) RV BPV TRV RV BPV TRV
39 (10 min) 0.2011 0.1301 0.1091 0.5289 0.5528 0.5069
78 (5 min) 0.1977 0.1169 0.0553 0.3952 0.3925 0.3439
130 (3 min) 0.2000 0.1061 0.0280 0.3321 0.3057 0.2592
390 (1 min) 0.2011 0.0774 0.0961 0.2512 0.1825 0.1801
520 (45 sec) 0.1995 0.0680 0.0767 0.2381 0.1576 0.1517
780 (30 sec) 0.2006 0.0593 0.0506 0.2268 0.1293 0.1169
2340 (10 sec) 0.1997 0.0362 0.0357 0.2088 0.0751 0.0699
4680 (5 sec) 0.1996 0.0269 0.0244 0.2042 0.0537 0.0488
23400 (1 sec) 0.1992 0.0126 0.0100 0.2002 0.0244 0.0216

4. Conclusion

In this paper, we proposed an integrated volatility estimator using intraday absolute
returns. We showed that our estimator is consistent, asymptotically normal, and most
important that our estimator is asymptotically more efficient than BPV, the most widely
used estimator of volatility in the presence of jumps. We analyzed simulation experiments
to investigate finite-sample properties and found that our estimator outperforms BPV in
terms of RMSE at sampling frequencies commonly used in practice.

A natural extension of this research is to construct a statistical test for the presence of
jumps, as in Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen (2005). It
is also important that future works extend our research to consider not only jump effects,
but also, simultaneously, micro-structure effects, as in Podolskij and Vetter (2009).

Appendix

In this appendix, we provide proofs for Theorems 1 and 2. First, we recall the definition
of TRV, setting t = 1 for convenience. In addition, we assume that n evenly spaced
observed price data are obtained in each period; thus, we set ni = n = Mα for all i
and m = M1−α. The asymptotic results under this assumption clearly hold for the more
general case ni = O(n). Then, TRV for evenly spaced data with sample size M is given
as

TRVM,α =
µ−2

1

n

m∑
i=1

(
n∑

j=1

|rn(i−1)+j|

)2

.

where rj = p
(

j
M

)
− p

(
j−1
M

)
.

Proof of Theorem 1
We first show the consistency of TRV.

311



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 306-314

TRVM,α = µ−2
1

m∑
i=1

{
1√
n

n∑
j=1

|rn(i−1)+j|

}2

=
µ−2

1

n

mn∑
i=1

r2
i +

2µ−2
1

n

m∑
i=1

n−1∑
j=1

n−j∑
l=1

|ra+j||ra+j+l|

=
µ−2

1

n
RV +

2

n

n−1∑
i=1

wiBPVM,i,

where RVM =
∑M

i=1 r2
i , wi = (1− i

Mα ), and BPVM,i is defined as BPVM,i = µ−2
1

∑M−i
j=1 |rt,j||rt,j+i|.

Therefore we can express as

TRVM,α =
µ−2

1

Mα
RVM +

2

Mα

Mα−1∑
i=1

wiBPVM,i. (8)

From the proof of Theorem 2 in Barndorff-Nielsen and Shepard (2004), it is obvious that
if M → ∞ and i = O(Mα) where α < 1, BPVM,i converges to IV in the presence of
jumps. It is also evident that when M → ∞ and 0 < α, the first term on the right-hand
side of (8) converges to 0. Thus, if 0 < α < 1,

lim
M→∞

TRVM,α = lim
M→∞

2

Mα

Mα−1∑
i=1

wiBPVM,i =

∫ 1

0

σ2(s)ds.

¥

Proof of theorem 2
Before showing the asymptotic normality of TRV, we consider the asymptotic variance.

We define σ2
j as

σ2
j = σ2

(
j

M

)
− σ2

(
j − 1

M

)
.

The joint distribution of r1, ..., rM and v1, ..., vM are asymptotically equivalent, where

vj = σjuj

and u1, ..., uM are i.i.d. N(0, 1).
Then,

TRVM,α
L
=

1

n

m∑
i=1

(
n∑

j=1

σ2
a+j|ua+j|2 + 2

n−1∑
j=1

n−j∑
l=1

σa+jσa+j+l|ua+j||ua+j+l|

)
,

where a = n(i − 1).
Following the proof of Theorem 2 in Barndorff-Nielsen and Shepard (2004), we intro-

duce

ψj =

√
M

∫ j/M

(1−j)/M

σ2(s)ds,
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and then

TRVM,α =
1

mn2

m∑
i=1

(
n∑

j=1

ψ2
a+j|ua+j|2 + 2

n−1∑
j=1

n−j∑
l=1

ψa+jψa+j+l|ua+j||ua+j+l|

)
.

The conditional mean of TRV is then

E[TRVM,α|σ2] =
1

mn2

m∑
i=1

(
n∑

j=1

ψ2
a+j + 2µ2

1

n−1∑
j=1

n−j∑
l=1

ψa+jψa+j+l

)
.

We now prove Theorem 2, letting

D =
√

M(TRVM,α − E[TRVM,α|σ2])

=
1√
mn3

m∑
i=1

(
n∑

j=1

ψ2
a+jva+j + 2

n1∑
j=1

n−j∑
l=1

ψa+jψa+j+lwa+j,a+j+l

)
,

where vi = |ui|2 − 1, wi,j = |ui||uj| − µ2
1, and n1 = n − 1.

It is easy to obtain

var[vi] = 2, cov[vi, vj] = 0,

E[wi,j] = 0, var[wi,j] = 1 − µ4
1,

cov[wi,j, wi,k] = cov[wi,j, wk,i] = µ2
1(1 − µ2

1), cov[wi,j, wk,l] = 0,

cov[vi, wj,i] = cov[vi, wi,j] = µ2
1, cov[vi, wj,k] = 0.

Hence, E[D|σ2] = 0 and

var[D|σ2] =
1

mn3

m∑
i=1

E

(
n∑

j=1

ψ2
a+jva+j + 2

n1∑
j=1

n−j∑
l=1

ψa+jψa+j+lwa+j+l

)2
 ,

and we can show

var[D|σ2] =
1

mn3

(
E

[
v2

i

] M∑
i=1

ψ4
i + 4E

[
w2

i,j

] m∑
i=1

n1∑
j=1

n−j∑
l=1

ψ2
a+jψ

2
a+j+l

+ 4cov [vi, wi,j]
m∑

i=1

n∑
j=1

∑
{1≤l≤n1:l 6=j}

ψ3
a+jψa+l

+8cov [wi,j, wi,l]
m∑

i=1

n1∑
j=1

∑
{1≤l≤s≤n1:l 6=s 6=j}

ψ2
a+jψa+lψa+s


=

1

M
8cov [wi,j, wi,l]

1

n2

m∑
i=1

n1∑
j=1

∑
{1≤l≤s≤n1:l 6=s6=j}

ψ2
a+jψa+lψa+s + o(M−1).

Assuming Riemann integrability, we obtain the conditional asymptotic variance of D.

lim
M→∞

var[D|σ2] = V

∫ t

0

σ4(s)ds, (9)

313



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 306-314

where
V = 4cov[wi,j, wi,l] = 4µ2

1(1 − µ2
1).

Finally, we must show the asymptotic normality of TRV. As shown in Equation (8),
TRV can be represented as the linear combination of RV and BPV. The asymptotic
normality of RV and BPV in the presence of jumps is shown in Barndorff-Nielsen and
Shephard (2006). Hence, it is clear that the distribution of TRV is asymptotically normal.
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