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1 Introduction
In spite of the interpretational problems of its key parameter µ , the logistic quantal-response
equilibrium (QRE) has been enjoying an increasing popularity in the experimental literature. It
has appeared in 168 research papers in the leading journals of the field over the past 13 years
(table 1), and has been implemented in the game-theoretic analysis software Gambit (McKelvey
et al., 2007).

Table 1: Number of articles published in scientific journals in which the concept of “quantal
response equilibrium” appears. Sources: ScienceDirect and SpringerLink.

year ScienceDirect SprigerLink sum
1995 1 0 1
1996 1 1 2
1997 3 0 3
1998 8 2 10
1999 5 0 5
2000 6 1 7
2001 3 0 3
2002 18 0 18
2003 11 0 11
2004 12 1 13
2005 16 7 23
2006 14 3 17
2007 15 7 22
2008 27 5 32

1995 - 2008 140 28 168

The goal of this note is to reflect on µ and to set some guidelines for its use with experi-
mental data. First, as any statistical estimate, µ also should always be reported with its standard
error and/or its statistical significance should be tested. Second, the QRE estimation result can
only be assessed in light of a corresponding Nash equilibrium, as the distance between the ob-
served behavior and the predicted Nash behavior. Third, in order to assess the goodness-of-fit
of the QRE model, to interpret its parameter and/or to compare it across different games, µ

should be corrected and normalized.
The notion of the quantal response equilibrium has been introduced to the experimental

literature by McKelvey and Palfrey (1995) as a possible generalization of the Nash equilibrium.
In a quantal-choice model, players make unsystematic mistakes when computing the expected
utility attached to their actions and therefore play some noisy best response. Just like the Nash
equilibrium, the QRE then is a fixed point, but it is based on these noisy best responses.

In the most-frequently estimated logistic version of QRE, the individual mistakes are mod-
eled with the log-Weibull distribution with a standard deviation proportional to µ .1 Therefore,
the unique µ parameter of the model can be interpreted as a proxy of the players’ rationality,
i.e. the distance of the observed behavior from the fully-rational behavior assumed by a Nash
equilibrium. If µ is above any limit, the considered expected utilities are extremely noisy and

1Some authors prefer to characterize QRE by a λ parameter that represents the inverse of µ , i.e. λ = 1
µ

.
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players choose their actions practically without looking at them. They randomize among the
available actions with equal probability. While as µ approaches 0, players behave more and
more in line with the Nash prediction and play best response in the limit, when µ is equal to 0.

Although the two extreme values of µ allow for straightforward interpretations, it is unclear
how to interpret the values in between. The literature has fitted the QRE model to numerous
data sets on various games and experimental settings. The estimates vary greatly. As µ seems
to be game-dependent, the questions of how big is big and how small is small remain open.

Motivated by the increasing popularity of the QRE model, Haile et al. (2008) analyze the
“empirical content” of the model and argue that the QRE’s widely-documented ability to ex-
plain experimental data lies in that it can rationalize a large set of behavior patterns in normal
form games. The authors call for additional assumptions on the error term, like the ones behind
the logistic version of the model studied here, and for presenting the set of possible outcomes
for any analyzed game in order to give a clearer interpretation of the experimental evidence. In
their answer to the received criticism, Goeree et al. (2005) list such necessary conditions and
also propose a regular quantal-response equilibrium (RQRE) whose smoothed best-response
functions have enough structure to provide testable predictions. They claim that the imposed
restriction are consistent with previous laboratory observations. This note does not pretend to
contribute to the outlined discussion on the QRE model. It considers its most-popular restricted
logistic version and raises practical questions related to the interpretation of its parameter.

2 Logistic QRE
Let ui j(σ−i) denote player i’s expected utility when she plays action j against the other player
strategy σ−i. In the quantal response model, when choosing their strategies players consider

ûi j(σ−i) = ui j(σ−i)+ εi j (1)

instead that incorporates some unsystematic error represented by εi j. Similarly to the Nash
equilibrium, the QRE is a fixed point of the best response function, but it is based on the noisy
expected utilities.

In the logistic QRE model (McKelvey and Palfrey, 1995), the error terms εi j are assumed to
have independent log-Weibull distribution with a standard error proportional to µ . For a given
µ , the players’ equilibrium strategies (marked with a star) are computed according to

σ
∗
i j(u
∗
i ) =

exp(u∗i j/µ)

∑
n
k=1 exp(u∗ik/µ)

, (2)

where σ∗i j is the probability assigned to action j by player i in the equilibrium, u∗i is the vector
of the u∗i js that denote player i’s expected utility when she plays action j in a situation where the
other player plays σ∗−i. The above expression is typically used to build the likelihood function
for the estimation of µ from experimental data.

3 Interpreting µ

3.1 The games
In this section, the database from Ochs (1995) is used to illustrate the difficulty of interpreting
the µ estimates and to give some practical advice. The data was generated by observing subjects
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in the laboratory who played three different two-player simultaneous-move games whose main
characteristics is a unique Nash equilibrium in mixed strategies. Given that for Ochs’ game 1
the Nash equilibrium coincides with random play and therefore with the QRE for any µ , here
only games 2 and 3 are analyzed. The upper part of figure 1 shows the strategic form definition
of the two games. McKelvey and Palfrey (1995) use the same database to present the model
and the predictive power of the QRE.

Since µ is payoff-dependent and the estimation result depends on the unit in which (ex-
pected) utility is measured, McKelvey and Palfrey (1995) propose to study a payoff-distorted
version of the games. They estimate µ using the same database, but they use the payoff matrices
displayed in the lower part of figure 1 in constructing the QRE model.

On one hand, they take into account that Ochs paid his subjects by lotteries (in order to
balance expected payoffs between the row- and the column-players). On the other hand, they
transform the original payoff matrix into 1982 pennies to have a common currency among all
analyzed games. The use of 1982 pennies as a common currency for all the analyzed games is
only justified by a failed attempt to find consistency in the parameter estimates across several
games. While it is plausible to assume that subjects with different conversion rules face differ-
ent payoffs, it is unclear why subjects would consider the 1982 equivalent of their cash amount
in making their decisions. Money is assumed to give the ultimate incentive in laboratory exper-
iments related to economics, however the decision problem is presented and the decisions are
made in experimental monetary units. Therefore participants are more likely to think and make
considerations (in particular, to compute expected payoffs) in experimental monetary units than
in dollars.

Figure 1: Games 2 and 3 defined by Ochs (1995), and their payoff-distorted versions by McK-
elvey and Palfrey (1995).

game 2 game 3

Ochs
L R

T 9, 0 0, 1
B 0, 1 1, 0

L R
T 4, 0 0, 1
B 0, 1 1, 0

McK-P
L R

T 1.1144, 0.0000 0.0000, 1.1141
B 0.0000, 1.1141 0.1238, 0.0000

L R
T 1.1144, 0.0000 0.0000, 1.1141
B 0.0000, 1.1144 0.2785, 0.0000

The main purpose of looking at these games through experimental data was to analyze
mixed-strategy Nash equilibria. The unique Nash equilibrium is (σ∗r ,σ

∗
c ) =

(
{1

2 ,
1
2},{

1
10 ,

9
10}

)
in game 2, and (σ∗r ,σ

∗
c ) =

(
{1

2 ,
1
2},{

1
5 ,

4
5}
)

in game 3, where σ∗r denotes the row player’s
equilibrium strategy and σ∗c the column player’s.

According to the original experimental design (Ochs, 1995), in each round participants
had to decide how many times to play the action T (row players) or L (column players) in 10
consecutive hypothetical repetitions of the game. Then the computer prepared a randomized
list of actions, matched the players and computed the payoffs accordingly.

The complication arises, because this design introduces a super-game in which players’
action sets are different from the ones defined in figure 1. In each round, both the row- and
the column-player subject had to choose from the set {0,1,2,3,4, 5,6,7,8,9,10} instead of
{T,B} or {L,R}, respectively. From a game-theoretic point of view the two games are equiv-
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alent, as it is easy to find an isomophism that matches the (equilibrium) strategies of the orig-
inal and the ones of the super-game.2 Nevertheless, the QRE is not immune to the above
change in the experimental design. To show this in a simple way, let us consider the so-called
n-full version of the game whose payoff matrix has (n+ 1) rows and (n+ 1) columns. In
the n-full version of the game, players have to choose from a different action sets. The cell
in the ith row and the jth column represents a situation in which the row players chooses
T randomly (n+ 1− i) times and the column player chooses L randomly (n+ 1− j) times
in the n consecutive repetitions of the original game. For example in game 2, the corre-
sponding payoffs therefore are 1

n [4(n+1− i)(n+1− j)+(i−1)( j−1)] for the row player
and 1

n [(i−1)(n+1− j)+(n+1− i)( j−1)] for the column player.
The set of Nash equilibria of the n-full game is much larger than the one of the reduced

game, as the former typically contains a continuum of mixed-strategy equilibria. For example,
in the 2-full game any profile (σ∗r ,σ

∗
c ) = ({p,1−2p, p}, {q1,q2,4q1 +1.5q2}) with p ∈ [0, 1

2 ]
and q1,q2 ∈ [0,1] such that 4q1 +1.5q2 ≤ 1 represents a Nash equilibrium. The good news is
that all of them correspond to the unique mixed-strategy equilibrium of the original game. The
QRE represents an equilibrium refinement (McKelvey and Palfrey, 1995), given that it selects a
unique strategy profile for any value of µ . In particular, for µ = 0, the QRE of the 2-full game
is
(
{1

3 ,
1
3 ,

1
3},{

1
5 ,0,

4
5}
)
.3

3.2 Payoff and strategy-set dependence
As noted by McKelvey and Palfrey (1995), µ is payoff dependent. If the payoff matrix (includ-
ing both players’ payoffs) is multiplied by a constant, the corresponding estimate of µ changes
proportionally, it is multiplied by the same constant. McKelvey and Palfrey (1995) also fit the
QRE model to data previously studied by Lieberman (1960) using a distorted payoff matrix. In
their attempt to use 1982 pennies as a common currency for all analyzed games, they multiply
all the elements in the payoff matrix by 3.373 in this case. This modification renders µ esti-
mates that are 3.373 times larger than the those that can be obtained by considering the original
game.

Since the the original QRE model operates with a unique parameter, i.e. the same µ for
both players, it is not immune to payoff distortions that affect player asymmetrically. Also, as
it is shown below, the QRE estimates are not robust for changes in the strategy space as the one
described in the previous section.

Table 2 contains the QRE estimation results for the four versions (two sets of payoffs and
two strategy sets) of the two games (games 2 and 3) taking into account different periods in
time. Not only the µs change in a non-monotonic way across these versions, but more im-
portantly, they lead to qualitatively different conclusions on the best-performing model among
random choice, QRE and Nash equilibrium. Table 3 displays the name of the best-fitting model
in each of the studied cases. The model choice is based on the Akaike (AIC) and the Bayesian
(BIC) model-selection criteria and the likelihood-ratio test for embedded models.4 With two

2Action i in the super-game correspond to a mixed strategy in the original game according to which the player
mixes between her two available action with probabilities i

10 and 10−i
10 , respectively. Mixed strategies of the super-

game can also be transformed into mixed-strategies of the original game.
3It is true that the unique mixed-strategy Nash equilibrium of the original game coincides with the simplified

version of the strategy profile selected by the QRE for µ = 0 in the n-full game. Note that, in the QRE of the n-full
game for µ = 0, action T of the reduced game is played ∑

n
k=0 k 1

n = 1
n ∑

n
k=0 k = n

2 times over the n repetitions of
the game. Normalized to one game it is precisely 1

2 .
4All the comparisons are based on the log-likelihood (lnL ) of the estimation results. AIC is computed as

2k−2lnL , where k is the number of estimated parameters, while BIC is defined as k lnn−2lnL , where n is the
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exception they pick the same competing model.
Recall that the full games with the original payoff table (Ochs) describe best the situation

that subjects faced in the experimental laboratory. It seems that the strategies observed in the
laboratory during the early periods are best described as random. Then periods characterized
by noisy best-response (QRE) follow. Observed behavior in game 3 converges to the Nash
equilibrium in the latest rounds, while in game 2 it does not. It is important to note that the
distortions of the payoff matrix and the strategy sets in McKelvey and Palfrey (1995) tend to
favor the QRE model.

A simple Monte Carlo experiment shows that switching between the reduced and the n-
full game does result in different estimates for µ , and there does not exist a regular pattern or
systematic bias. In any case, these results suggest caution and that the strategy set implied by
the experimental instructions should be used in the QRE estimation process.

Monte Carlo experiment 1 In this experiment, players are asked in each of a total of 10
rounds to imagine 2 hypothetical repetitions of game 3 and to decide how often she would like
to play the action T . For technical reasons, in order to be able to study all possible strategy
profiles, the reduced game is studied along with the 2-full game. Figure 2 plots the estimation
results from the reduced game as a function of the 2-full-game estimates. It includes 4,356
points that show some positive correlation, but no clear pattern or bias other than some white
areas due to lack of precision in the estimation process. Also, given that the optimal µ has been
estimated by selecting the value that belongs to the highest log-likelihood on a grid with 360
evaluation points, the points in the figure tend to stay in regular rows and columns.

3.3 Normalization
The model behind the QRE assumes that players are rational in the sense that they try their best
to play some sort of best response to the opponent’s behavior, but they may make some unsys-
tematic errors when computing the expected payoffs that their decisions are based on (equation
1). If we were to observe these subjectively-computed expected payoffs, the goodness-of-fit of
the QRE model could be assessed by comparing their variance to µ2. This would shed light on
what proportion of the variation in the subjective expected payoffs is due to errors, i.e. the vari-
ance of the error term.5 Unfortunately this normalization is almost never feasible in practice,
therefore we must rely on proxies.

Let umin∗
i denote player i’s smallest possible payoff when she plays a best-response strat-

egy. Similarly, let umax∗
i be her maximum best-response payoff. Formally, these are umin∗

i =
minσ−i maxσ j ui(σi,σ−i) and umax∗

i = maxσ−i maxσ j ui(σi,σ−i), where ui(σi,σ−i) is player i’s
expected payoff when using strategy σi against the opponent’s σ−i strategy. Now we can use
the difference di = umax∗

i −umin∗
i as a proxy for the total variation in the subjectively-computed

expected payoffs by player i. Note that it is always non-negative and only can be equal to zero
in uninteresting degenerate games. Therefore, the average of these differences across players
can then be used to normalize µ: µn =

µ
1
2 (di+d−i)

. In case the payoff matrix (for both players)

number of observations. The model with the smaller AIC and/or BIC value is preferred. The test statistics of the
likelihood-ratio test is −2L0

L1
, where L0 is the likelihood of the restricted model and L1 is the one of the general

model. For the nested model, the test statistics follows the χ2 distribution. The degree of freedom is equal to 1,
i.e. the difference in the number of parameters between the two models.

5The same philosophy is used to compute relative variances, and it lies also behind the well-known R2 statistics
for various regression models.
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Table 2: Likelihood estimates of µ and log-likelihood values corresponding to the QRE model
using experimental data gathered by Ochs (1995). µn: normalized µ; Random: QRE with
µ→ ∞; Nash: QRE with µ = 0. Columns 2 to 6: payoffs as given by Ochs (1995). Columns 7
to 11: payoffs as given by McKelvey and Palfrey (1995). Reduced and full game: as defined in
the main text. ***Estimate significantly different from zero at 1%.

periods µ µn lnLOchs µ µn lnLMcK−P
QRE Random Nash QRE Random Nash

REDUCED GAME 2
1−16 19.83 4.41 -1769 -1774 -1938 0.51∗∗∗ 0.49 -1721 -1774 -1938

17−32 0.19∗∗∗ 0.04 -1587 -1774 -1664 0.27∗∗∗ 0.25 -1517 -1774 -1664
33−48 0.10∗∗∗ 0.02 -1703 -1774 -1725 0.29∗∗∗ 0.27 -1605 -1774 -1725
49−56 0.15∗∗∗ 0.03 -767 -887 -792 0.22∗∗∗ 0.21 -743 -887 -792

all 7.70∗∗∗ 1.71 -6103 -6211 -6120 0.31∗∗∗ 0.29 -5612 -6211 -6120
REDUCED GAME 3

1−16 8.73 4.36 -1772 -1774 -1821 0.54∗∗∗ 0.55 -1747 -1774 -1822
17−32 3.50∗∗∗ 1.75 -1755 -1774 -1870 0.64∗∗∗ 0.65 -1735 -1774 -1870
33−48 0.26∗∗∗ 0.13 -1661 -1774 -1708 0.31∗∗∗ 0.31 -1640 -1774 -1708
49−64 0.00 0.00 -1678 -1774 -1678 0.00∗∗∗ 0.00 -1679 -1774 -1679

all 4.93∗∗∗ 2.46 -7066 -7098 -7079 0.38∗∗∗ 0.39 -6864 -7098 -7079
FULL GAME 2

1−16 79.22 1.84 -613 -614 -684 2.04∗∗∗ 0.26 -601 -614 -913
17−32 0.70∗∗∗ 0.02 -575 -614 -598 1.02∗∗∗ 0.13 -548 -614 -839
33−48 0.40∗∗∗ 0.01 -610 -614 -617 1.12∗∗∗ 0.14 -571 -614 -840
49−56 0.53∗∗∗ 0.01 -279 -307 -286 0.82∗∗∗ 0.10 -270 -307 -413

all 0.51∗∗∗ 0.01 -2147 -2149 -2185 1.20∗∗∗ 0.15 -1997 -2149 -3005
FULL GAME 3

1−16 34.62 1.89 -613 -614 -630 2.15∗∗∗ 0.30 -607 -614 -646
17−32 13.93 0.75 -609 -614 -643 2.53∗∗∗ 0.35 -604 -614 -669
33−48 1.04∗∗∗ 0.06 -586 -614 -599 1.18∗∗∗ 0.16 -580 -614 -617
49−64 0.10∗∗∗ 0.01 -592 -614 -592 0.01∗∗∗ 0.00 -574 -614 -630

all 0.48∗∗∗ 0.03 -2451 -2455 -2462 1.51∗∗∗ 0.21 -2397 -2455 -2563
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Figure 2: Monte Carlos experiment results. Estimates of µ for the reduced game (horizontal
axis) and the n-full game (vertical axis), for n = 2.
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is multiplied by the same constant, like the reconsideration of Lieberman (1960) by McKelvey
and Palfrey (1995), both µ and (di + d−i) change proportionally. Therefore µn stays constant
and can be compared across different games. However, as the normalized values in table 2
show, µn is only robust to small changes in payoffs like the ones between games 2 and 3 (every
other characteristic constant). Larger asymmetric changes in payoffs and modifications in the
strategy sets can cause large changes even in µn.

4 Conclusions
We have seen that µ is game-dependent: changes in the players’ payoffs and/or strategy sets
may render completely different estimates for µ , even if such changes do not alter incentives
and the main game-thoretic characteristics of the conflict.

Therefore, it is important to use that model in the QRE estimation that lies the closest to
the experimental design. The normalization technique—of converting experimental monetary
units to real money, or finding a common monetary unit for games played in different point in
time and/or space—proposed by McKelvey and Palfrey (1995) make questionable adjustments
that unnecessarily affects all players in the same way and introduces a bias into the estimation
results.

In other words, µ is situation- and game-specific, therefore can not be generalized or in-
terpreted across games even if those are very similar to each other. This also implies that the
underlying QRE concept has constrained predictive power, although may successfully be used
to identify learning effect in the laboratory.

The normalized µ , i.e. µn, proposed in this note allows for further comparisons among
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Table 3: The best fitting model to the data gathered by Ochs (1995) based on the likelihood-
ratio (LR) test, the AIC and the BIC criterion. Random: QRE with µ → ∞. Nash: QRE with
µ = 0. Columns 2 to 5: payoffs as given by Ochs (1995). Columns 6 to 9: payoffs as given by
McKelvey and Palfrey (1995). Reduced and full game: as defined in the main text.

Periods lnLOchs lnLMcK−P
LR AIC BIC LR AIC BIC

REDUCED GAME 2
1−16 QRE QRE QRE QRE QRE QRE

17−32 QRE QRE QRE QRE QRE QRE
33−48 QRE QRE QRE QRE QRE QRE
49−56 QRE QRE QRE QRE QRE QRE

all QRE QRE QRE QRE QRE QRE
REDUCED GAME 3

1−16 Random QRE Random QRE QRE QRE
17−32 QRE QRE QRE QRE QRE QRE
33−48 QRE QRE QRE QRE QRE QRE
49−64 Nash Nash Nash Nash Nash Nash

all QRE QRE QRE QRE QRE QRE
FULL GAME 2

1−16 Random Random Random QRE QRE QRE
17−32 QRE QRE QRE QRE QRE QRE
33−48 QRE QRE QRE QRE QRE QRE
49−56 QRE QRE QRE QRE QRE QRE

all Random QRE QRE QRE QRE QRE
FULL GAME 3

1−16 Random Random Random QRE QRE QRE
17−32 QRE QRE QRE QRE QRE QRE
33−48 QRE QRE QRE QRE QRE QRE
49−64 Nash Nash Nash QRE QRE QRE

all QRE QRE QRE QRE QRE QRE
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“similar” games. Nevertheless, the ultimate point of reference for the QRE as an equilibrium
concept based on noisy best responses remains the corresponding Nash equilibrium.
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