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Abstract 

In this paper we use a copula-based GARCH model to estimate conditional variances and covariances of the 
multivariate relationship among English, German and French markets. To that, we used daily prices of FTSE100, 
DAX and CAC from July 2009 to July 2011, totalizing 508 observations. The volatility of markets and their 
dependences indicate vestiges of the current European financial crisis, presenting a cluster of volatility and decrease of 
correlations near to dates of important events. Further, we used CUSUM, MOSUM and F tests to verify the presence 
of structural change in the volatility of these markets. The results allow concluding that the three markets had the same 
estimated break point, which coincided with start of Greek crisis. After the peak of turbulence, the risk of these 
markets returned to lower levels, so they can again be considered as relevant options for international diversification.
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1. Introduction 

 

Managing and monitoring major financial assets are routine for many individuals and 

organizations. Therefore careful analysis, specification, estimation and forecasting the 

dynamics of returns of financial assets, construction and evaluation of portfolios are essential 

skills in the toolkit of any financial planner and analyst. 

There is evidence which shows that there are structural breaks in financial markets 

that affect fundamental financial indicators such as returns and volatility (Andreou and 

Ghysels, 2006; Horváth et al., 2006). Empirical evidence shows that various economic events 

can lead to structural changes detected in a large number of financial series, especially crisis, 

which causes great turbulence, leading to a huge challenge for risk management. 

Within this context, the knowledge of the stochastic behavior of correlations and 

covariances between asset returns is an essential part in asset pricing, portfolio selection and 

risk management (Baur, 2006). The study of volatility is therefore of great importance in 

finance, particularly in derivative pricing and risk management of investments. Traditionally 

the calculation of estimates of the volatility of financial returns as well as its application in 

determining the value at risk (VaR) of a portfolio rely on the daily changes in asset prices 

(Goodhart and O'hara, 1997). 

Since the proposal of Generalized Auto-Regressive Conditional Heteroscedastic 

(GARCH) family models by Engle (1982) and Bollerslev (1986) to account for variance 

heterogeneity in financial time series, a huge number of multivariate extensions of GARCH 

models have been introduced. The most consolidated models in literature are the Constant 

Conditional Correlation (CCC-GARCH) model of Bollerslev (1990), the BEKK model of 

Engle and Kroner (1995) and later the Dynamic Conditional Correlation (DCC-GARCH), 

developed by Engle and Sheppard (2001) and Tse and Tsui (2002). These models are based 

on multivariate Gaussian distributions, where care has to be taken to result in positive 

definite covariance matrices.  

However, this assumption is unrealistic, as evidenced by numerous studies, in which 

it has been shown that many financial asset returns are skewed, leptokurtic, and 

asymmetrically dependent (Longin and Solnik, 2001; Ang and Chen, 2002; Patton, 2006). 

These difficulties can be treated as a problem of Copulas. A copula is a function that links 

univariate marginals to their multivariate distribution. Since it is always possible to map any 

vector of random variables into a vector with uniform margins, we are able to split the 

margins of that vector and a digest of the dependence, which is the copula. The concept of 

copula was introduced by Sklar (1959) and studied by many authors such as Deheuvels 

(1979), Genest and MacKay (1986). The use of copulas for modeling the residual 

dependence between assets has recently appeared in empirical studies (Jondeau and 

Rockinger, 2006; Ausin and Lopes, 2010; Min and Czado, 2010). 

In this sense, the present study attempts to test the presence of structural change in the 

volatility of the major European financial markets (Germany, France and England). The 

sample is formed by daily prices of DAX, CAC and FTSE100 from July, 2009 to July, 2011, 

totaling 508 observations. The choice of this period considers the Greek financial crisis of 

2010, in order to identify possible vestiges of it. These markets are the most mature within 

the universe of European countries and actually attract a particular attention from global 

investors thanks to their great market openness.  

We fitted a copula-based GARCH model for the estimation of the conditional 

volatilities on the multivariate relationship of these markets. Without the assumption of 

multivariate normality, the joint distribution can be decomposed into its marginal 

distributions and a copula, which can then be considered both separately and simultaneously. 
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Thus we used cumulative and moving sums of residuals, beyond the F tests, of structural 

change in order to estimate the temporal point of break. 

  

2. Multivariate Volatility Modeling 

 

Multivariate models of volatility have attracted considerable interest during the last 

decade. This may be associated with increased availability of financial data, the increasing of 

the processing capacity of computers, and the fact that the financial sector began to realize 

the potential advantages of these models. 

But when it comes to the specification of a multivariate GARCH model, there is a 

dilemma. On one hand, the model should be flexible enough to be able to represent the 

dynamics of variance and covariance. On the other, as the number of parameters in a 

multivariate GARCH model often increases rapidly with the size of assets, the specification 

must be parsimonious enough to allow the model to be estimated with relative ease, as well 

as allowing a simple interpretation of its parameters. 

A feature that must be taken into account in the specification is the restriction of 

positivity (covariance matrices must necessarily take its determinants defined as positive). 

Based on this idea, consider the model with multivariate GARCH parameterization VECH, 

proposed by Bollerslev, Engle and Wooldridge (1988), represented by (1). 

    (  )     ∑       (    )
 
    ∑       (         

 ) 
    .                          (1) 

In (1), vech is the operator that contains the lower triangle of a symmetric matrix into 

a vector;     describes the conditional variance; the error term is     
   

          (   ). 

The disadvantages of this model are the large number of parameters and the restrictions that 

must be imposed in order to ensure the positivity of   . 

Thus, emerges the BEKK parameterization as an alternative, suggested by Engle and 

Kroner (1995). The BEKK parameterization, which essentially takes care of the problems 

mentioned above about the VECH model, is defined as shown in (2). 

                     
 .                                                                                   (2) 

The matrices A, B and C, which contain the coefficients for the case with two assets, 

are defined as: 

  *
      

      
+    [

      

      
]    *
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In (2),      is the conditional covariance matrix. The parameter B explains the 

relationship between the past conditional variances with the current ones. The parameter A 

measures the extent to which conditional variances are correlated with past squared errors, 

i.e. it captures the effects of shocks. The total number of estimated parameters in the bivariate 

case is eleven. In this case, the volatilities of the equation (2) have the forms (4) and (5). 
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     (5)                                                                             

However, the BEKK model parameterization has the disadvantage of being difficult 

to interpret its estimated parameters. The formulations (4) and (5) show that even for the case 

of bivariate modeling, the interpretation of the coefficients can be confusing because there 

are no parameters that are governed exclusively by an equation (Baur, 2006). 

 Thus, an approach to circumvent the problem of interpretation of the parameters is the 

model of conditional covariance matrix, observed indirectly through the matrix of conditional 

correlations. The first such model was the constant conditional correlation (CCC) proposed 

by Bollerslev (1990) and Bollerslev and Wooldridge (1992). The conditional correlation was 

assumed to be constant and only the conditional branches are variable in time. The CCC 

model can be defined as the formulation (6). 
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          (   √          ).                                                                                   (6) 

 In the formulation (6)        (     
   

      
   

), where       is defined similarly to 

any univariate GARCH model;   (   ) is a symmetric positive definite matrix, with     

    , i.e., R is the matrix containing the constant conditional correlations   . 

However, the assumption that the conditional correlation is constant over time is not 

convincing, since, in practice, the correlation between assets undergoes many changes over 

time. Thus, Engle and Sheppard (2001) and Tse and Tsui (2002) introduced the model of 

dynamic conditional correlation (DCC). The DCC model is a two-step algorithm to estimate 

the parameters which makes it relatively simple to use in practice. In the first stage, the 

conditional variance is estimated by means of an univariate GARCH model, respectively, for 

each asset. In the second step, the parameters for the conditional correlation, given the 

parameters of the first stage, are estimated. Finally, the DCC model includes conditions that 

make the covariance matrix positive definite at all points in time and the covariance between 

assets’ volatility a stationary process. The DCC model is represented by the formulation (7). 

         .                                                                                                               (7) 

Where, 

       (     
    

      
    

)      (     
    

      
    

).                                                  (8) 

Since the square matrix of order N symmetric positive defined    (     ) has the 

form proposed in (9). 

   (     ) ̅           
       .                                                               (9) 

In (9),          √    ⁄ ;  ̅ is the N x N matrix composed by unconditional variance of 

  ; α and β are non-negative scalar parameters satisfying α + β < 1. 

All of the models mentioned in the previous section are estimated under the 

assumption of multivariate normality. The use of a copula function, on the other hand, allows 

us to consider the marginal distributions and the dependence structure both separately and 

simultaneously (Hsu, Tseng and Wang, 2008). Therefore, the joint distribution of the asset 

returns can be specified with full flexibility, which is more realistic. 

In that sense, Hansen (1994) proposes a GARCH model in which the first four 

moments are conditional and time varying. For the conditional mean and volatility, he built 

on the usual GARCH model. To control higher moments, he constructed a new density, 

which is a generalization of the Student-t distribution while maintaining the assumption of a 

zero mean and unit variance, in order to model the GARCH residuals. The conditioning is 

obtained by defining parameters as functions of past realizations (Jondeau and Rockinger, 

2006). The conditional volatility model proposed by Hensen (1994), and later discussed in 

Theodossiou (1998) and Jondeau and Rockinger (2003) is represented by formulation (10). 
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Where                            (        ). The density of skewed-t distribution 

is represented by formulation (11). 
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; η and ϕ are the kurtosis 

and asymmetry parameters, respectively. These are restricted to        and      
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3. Method 

 

We collected data of the daily prices of DAX, CAC and FTSE100 from July, 1, 2009 

to July, 11, 2011, totalizing 508 observations. These indices were chosen because they are 

commonly used in academic papers as proxies for the financial markets in these countries. 

All of them are compounds by the stocks that are more representative in terms of liquidity 

and value. We considered this period because it contemplates the Greek crisis of 2010, which 

still impacts the European market as a whole, in order to consider possible vestiges of it. 

To eliminate problems of non-stationarity, we calculated the log-returns of the 

indexes, as formulation (12) 

              .                                                                                                   (12) 

In (12),    is the log-return at period t;    is the price at period t.                                                                                              

We used a vector autoregressive model (VAR) to obtain the average estimate of the 

return and the series of residuals of each index. The mathematical form of the VAR(p) model 

used is represented by (13). 

                       .                                                                     (13) 

In (13),    is a k-dimensional vector of the log-returns at period t;    is a k-dimensional 

vector of constants;   , i=1,…,p are k x k matrixes of parameters; *  + is a sequence of 

serially uncorrelated random vectors with mean zero and covariance matrix Ʃ . 

Subsequently, using the residuals that were obtained through the VAR applied to the 

series, we used the copula-based GARCH model, represented by (10). Through this, the 

estimates of conditional variances and covariances of these markets were obtained. Thus, we 

calculated the dynamic VaR of these markets. The VaR is the lower quantile of the 

distribution of a portfolio. The absolute value of the (   )       VaR from the 

predictive distribution of a portfolio gives the loss that is not exceeded with probability  .The 

VaR is represented by formulation (14). 

               (   )  √    
 .                                                                         (14) 

In formulation (14)        is the value at risk estimate for the market j at the instant t; 

  is the probability distribution function of the returns;      is the mean of the returns of 

market j at the instant t;     
  is the conditional variance of market j at the instant t;   is the 

significance level. 

After that, to validate the copula-based model, we use the well-known Q statistic, 

represented for (15), which tests the null hypothesis that the data are random against the 

alternative of non-randomness of them. 

   (   )∑
 ̂ 

 

   

 
   .                                                                                            (15) 

In (15), n is the size of sample;  ̂ 
  is the autocorrelation of sample in lag k; h is the 

number of lags being tested; The Q statistics follows a chi-squared (  ) distribution with k 

degrees of freedom. 

In order to test the presence of structural change on the estimated volatilities due to 

the Greek crisis, we calculated cumulative sum of residuals (CUSUM), moving sums of 

residuals (MOSUM) and F tests of the standardized innovations of the volatility equations of 

the GARCH model. The applied tests are represented by formulations (16) to (21). 

      ( )  
 

 √ 
∑   

  ⌊  ⌋
     .                                                                                  (16)  

      (   )  
 

 √ 
∑   

  ⌊   ⌋ ⌊  ⌋

    ⌊   ⌋  
.                                                                    (17) 

In (16) and (17), n is the size of the sample; k is the number of parameters;    are the 

standardized residuals;   is the standard deviation of the sample;       is the number of 
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recursive residuals; ⌊ ⌋ is the integer part of  ; h   (0, 1) is the bandwidth parameter that 

defines the window of the moving average;    (  ⌊  ⌋) (   )⁄ . Under the null 

hypothesis, the limiting processes for these empirical fluctuation are the Standard Brownian 

Motion and its increments. Under the alternative, if there is just a single structural change 

point   , the recursive residuals will only have zero mean up to   . Hence the path of the 

process should be close to 0 up to    and leave its mean afterwards. 

An alternative to identify structural changes are the F tests. Chow (1960) was the first 

to suggest such kind of test on structural change for the case where the (potential) change 

point    is known. He proposed to fit two separate regressions for the two subsamples defined 

by    and to reject whenever equation (18) is too large. 

    
 ̂  ̂  ̂  ̂

 ̂  ̂ (    )
.                                                                                                         (18) 

In (18), n is the size of the sample; k is the number of parameters;  ̂ are the residuals 

from the full model, where the coefficients in the subsamples are estimated separately, and  ̂ 

are the residuals from the restricted model, where the parameters are just fitted once for all 

observations. The test statistic     has an asymptotic chi-squared  distribution with k degrees 

of freedom.  

The major drawback of this test is that the change point has to be known in advance, 

but there are tests based upon F statistics that do not require such specification. To do that, 

the first step is to calculate F statistics to all points in the sample and after use the expressions 

of formulations (19), (20) and (21) to test if some of them represents a structural change. 

               .                                                                                                   (19) 

     
 

     
∑   

 
   .                                                                                                (20) 

        (
 

     
∑    (     )

 
   ).                                                                        (21) 

Where, [   ] is the interval of the sample; The supF and the aveF statistics reflect the 

testing procedures that have been described above. Either the null hypothesis is rejected when 

the maximal or the mean F statistic gets too large. A third possibility is to reject when the 

expF statistic gets too large.  

  

4. Results 

 

Initially, we calculated the daily log-returns of the studied markets. The evolution of 

the prices end returns series is showed by Figures 1 and 2. 

Figure 1 indicates that the prices of the indexes do not have the property of 

stationarity, while the log-returns of Figure 2 do. The French market appears to be the less 

volatile. There is a cluster of volatility in the three series of log-returns around the 

observation 220. This is a vestige of the Greek crisis of 2010. Complementing this initial 

analysis, Table 1 presents the descriptive statistics of calculated log-returns, while Table 2 

presents the correlations among these markets. 

The results in Table 1 indicate that the three markets had very similar characteristics 

regarding to mean and standard deviation. All indices had a very close to zero mean, and a 

deviation around 1%. Further, DAX and FTSE showed negative asymmetry, while CAC had 

a positive one. The three markets are leptokurtic, as emphasized by kurtosis. This descriptive 

behavior is quite common in financial assets, especially in developed and liquid markets as 

the ones presented in this study. Complementing, Table 2 presents the correlation of the 

markets. The results confirm that there is strong contemporaneous dependence in the log-

returns of the markets because all correlations are greater than 90%. 
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Figure 1. Daily prices of DAX, CAC and FTSE100. 

 

 
Figure 2. Daily log-returns of DAX, CAC and FTSE100. 

  

After this initial analysis, we estimated the VAR, as specified in (17). With the residuals of 

this model we estimated the Copula-based GARCH, as formulated in (10). The results of this 

model are presented in Table 3. 
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Table 1. Descriptive statistics of daily log-returns of DAX, CAC and FTSE100. 

Statistic DAX CAC FTSE100 

Mean 0.0008 0.0004 0.0006 

Median 0.0009 0.0002 0.0011 

Minimum -0.0388 -0.0471 -0.0323 

Maximum 0.0516 0.0922 0.0503 

St. Deviation 0.0119 0.0135 0.0105 

Skewness -0.1081 0.2742 -0.0586 

Kurtosis 3.9139 7.2044 4.0995 

 

 Table 2. Correlation matrix of the daily log-returns of DAX, CAC and FTSE100. 

Variable DAX CAC FTSE100 

DAX 1.0000 0.9370 0.9035 

CAC 0.9370 1.0000 0.9302 

FTSE100 0.9035 0.9302 1.0000 

 

 Table 3. Results of the estimated copula-based GARCH models for the multivariate 

relationship of DAX, CAC and FTSE100. 

Variable Coefficient Error p-value 

DAX    >0.0001 >0.0001 0.3323 

DAX    0.0697 0.0345 0.0437 

DAX    0.8904 0.0747 0.0000 

CAC    >0.0001 >0.0001 0.0001 

CAC    0.0742 0.0415 0.0737 

CAC    0.8478 0.0082 0.0000 

FTSE    >0.0001 >0.0001 0.0841 

FTSE    0.0577 0.0519 0.2664 

FTSE    0.8796 0.0724 0.0000 

Log Lik. 5739.888 

AIC -22.583 

*Bold values are significant at 5% level. 

 

 The results in Table 3 indicate that the conditional volatilities of the studied markets 

were significantly affected at the level of 5% by lagged volatility. Moreover, these impacts 

had similar magnitudes for the three markets. Further, the lagged squared shocks of DAX 

impacted its own volatility. In order to validate this model, the Q statistics of the residuals are 

presented in Table 4. None of the lags was significant, emphasizing that residuals do not 

exhibit significant serial correlation. Therefore, the estimated model was able to fit the data, 

filtering the serial dependence and the heteroscedastic dynamic behavior of data. 

Complementing, the estimated volatilities and dynamic correlations are shown, 

respectively, in Figure 3 and 4. Figure 3 reinforces the previously results, indicating that 

there was a pattern in the volatility of the three markets. Again, around the observation 220 

there was a strong cluster of volatility. This is another vestige of the turbulence caused by the 

Greek crisis of 2010. 

Figure 4 emphasizes that during almost the whole analyzed period, the dynamic 

correlation among the three markets was close of 90%, indicating high dependence. The only 

significant change occurred just before the observation 400, lasting for a short time. This fact 

can be explained by the reaction of the investors to the European debt crisis, taking away 

money of these markets, once that at this period the credit rating of some markets had 

decreased. 
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Table 4. Q statistic for residuals estimated by copula-based GARCH model. 

 DAX CAC FTSE100 

Lag Q prob. Q prob. Q prob. 

1 0.0083 0.9275 0.0259 0.8722 0.0235 0.8781 

2 0.2262 0.8930 0.1718 0.9177 0.0553 0.9727 

3 0.2347 0.9718 0.1884 0.9794 0.0689 0.9953 

4 0.2395 0.9934 1.4706 0.8318 0.0696 0.9994 

5 1.2019 0.9447 1.8344 0.8715 0.2567 0.9984 

6 2.3618 0.8836 1.8570 0.9324 0.4448 0.9984 

7 2.7379 0.9081 2.0930 0.9545 0.5687 0.9991 

8 4.1168 0.8464 6.3695 0.6059 1.7860 0.9869 

9 6.1864 0.7211 7.3533 0.6004 2.4772 0.9815 

10 6.3333 0.7865 7.3767 0.6895 2.7785 0.9862 

* None of the values are significant at 5% level. 

 

  

 
Figure 3. Estimated conditional volatilities of daily log-returns of DAX, CAC and FTSE100. 

  

Based on the conditional mean and variances estimated by the GARCH model, we 

calculated the dynamic value at risk at 1% significance level for the three markets, as 

exposed in (18). Figure 5 presents the series of the VaR estimated and the realized log-

returns. Table 5 presents the one step ahead forecast out of the sample of the market’s VaR, 

based on 10,000 simulations. It also compares this estimate with that based on the 

unconditional mean and variance of the financial assets in question. 

 Figure 5, visually corroborates with the previous results of this study. All markets 

exhibit similar temporal evolution of their VaR. Again, there is a huge fall around the 

observation 220, indicating a volatility cluster, followed by a period of losses, caused by the 

Greek crisis. This Figure endorses the consistency of the dynamic VaR estimated, because 

during the period studied, only few returns exceeded the 99% confidence estimate. These 
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log-returns represent the 1% quantile of lower values. Thus, a static estimate of the VaR 

would result in poor prediction of losses, especially during the turbulence period, leading to 

an inefficient management of the risk. 

 
Figure 4. Estimated dynamic correlations of daily log-returns of DAX, CAC and FTSE100. 

 

 Table 5 confirms that the forecast for the VaR of the markets, calculated by 

the model of conditional volatility in question, are substantially lower than those based on 

unconditional mean and variances of the sample. This result indicates that the volatility of the 

markets has been reduced with decreasing of turbulence caused by the Greek crisis. This 

result is reinforced by the plots of Figure 3. This stabilization of the analyzed markets is very 

relevant to the international portfolio diversification because the volatility of European 

markets is a key determinant for explaining the risk-taking behaviors of investors, especially 

the substitution in their portfolios among different categories of securities. 

After that, we used the tests of formulations (16) to (21) to verify the presence of 

structural change in the conditional volatilities of the markets. The results are presented in 

Table 6. 

Results in Table 6 indicate that, in all markets, at least some tests rejected the null 

hypothesis, emphasizing that there were structural changes in the conditional volatilities. The 

SupF test was significant for all markets. ExpF test was significant for German and French 

markets. AveF test rejected the null hypothesis for German market. MOSUM test was 

significant for French and English market. Only the CUSUM test did not reject the null 

hypothesis for none of the markets. The break point estimated by the tests for all markets was 

at observation 214. This date corresponds to the beginning of Greek crisis, which spread 

around the whole Europe, causing a huge turbulence as noted by the cluster of volatility 

estimated with the GARCH model.  

Figure 6 visually confirms the effect caused in the risk of these markets. The vertical 

line points out the estimated structural break point that coincided with the crisis. After the 

great turbulence, the level of the volatility of the markets returned to a lower baseline, as 

discussed before. This fact evidenced that the European crisis of 2010 significantly changed 
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the risk of the major markets of the continent. It corroborates with the previous results of this 

paper. 

 

 
Figure 5. Estimated dynamic VaR (black) and daily log-returns (red) of DAX, CAC and 

FTSE100.  

   

Table 5. One step ahead forecast and static estimates of the value at risk of daily log-

returns of DAX, CAC and FTSE100. 

 VaR(1%) 

Variable Conditional Unconditional. 

DAX -0.0144 -0.0300 

CAC -0.0192 -0.0347 

FTSE -0.0123 -0.0266 

 

Table 6. Structural change tests and p-values for the estimated conditional volatilities of daily 

log-returns of DAX, CAC and FTSE100. 

Break at obs. 214 DAX CAC FTSE100 

Statistic Test p-value Test p-value Test p-value 

CUSUM 0.9412 0.3385 1.0237 0.2454 0.8153 0.5194 

MOSUM 1.0190 0.1820 1.6693 0.0100 1.4074 0.0112 

SupF 18.4030 0.0025 202.1132 >0.0001 48.4857 >0.0001 

AveF 5.1627 0.0330 3.9063 0.0866 4.3574 0.0609 

ExpF 5.2616 0.0065 5.1817 0.0098 18.3680 >0.0001 

*Bold values are significant at 5% level. 

 

3026



Economics Bulletin, 2011, Vol. 31 No. 4 pp. 3016-3029

 
Figure 6. Estimated break points of the conditional volatility of daily log-returns of DAX, 

CAC and FTSE100.  

  

6. Conclusions 

 

In this paper we verified the presence of structural change in the volatility of German, 

French and English markets due to the Greek crisis of 2010. Initially, we estimated a copula-

based multivariate GARCH model to obtain the conditional variance and covariance of the 

relationship among these markets. We found that both the volatility of these markets and its 

covariances showed some vestiges of the crisis, returning to a state of more stability after the 

peak of turbulence.  

These results were reflected in the estimation of the dynamic value at risk of returns, 

which exhibited similar behavior. Regarding to the forecast, which was done one step beyond 

the sample capturing a moment of less turbulence, we obtained value at risk estimates well 

below those calculated based on the unconditional mean and variance, emphasizing the 

importance of an adequate risk management. Thus, the use of models unable to correctly 

estimate the conditional volatility of an asset produces inappropriate results, prompting 

investors to achieve ineptly diversification of their portfolios.  

Through CUSUM, MOSUM and F tests of structural change it was found that, during 

the period studied, the major European markets suffered strong impact on its risk due to the 

crisis. Moreover, all markets had the same estimated break point. This date coincided with 

the beginning of the turbulence period, as evidenced by the estimated cluster of conditional 

volatility. After the peak of crisis the risk returned to lower levels. Thus, these markets, 

which are the most liquid in Europe, may again be considered as relevant options for 

international diversification. 

As suggestions for future studies, we highlight the application of a similar procedure 

to verify the presence of structural changes in other European markets, especially those most 

affected by the current continental crisis. Further, this procedure can be applied to investigate 

the vestiges of future financial crisis. 
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