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1. Introduction

The earliest contributions to the spatial competition analysis endogenized location choice
for single-store firms selling a homogenous product and competing in prices. It turned out
that the location-price model cannot sustain spatial agglomeration, either on the linear (see
d’Aspremont et al. (1979)) or the circular (see Kats (1995)) markets. Later, models studying
location choice for Cournot rivals proved that the intensity of competition was determinant
for this result. Anderson and Neven (1991) and Hamilton et al. (1989) established thus the
central agglomeration on the segment. More recently, Pal (1998), Matsushima (2001) and
Gupta et al. (2004) showed in turn that the shape of the market was equally important
for the location outcome, since Cournot competitors cannot completely agglomerate on the
circular market, but instead disperse, although they may cluster at several distinct locations.

Given the appealing properties of the Cournot spatial models, such as overlapping firm
areas or agglomeration at discrete points, several papers have soon modified various assump-
tions of the initial framework. Pal and Sarkar (2002) proved for instance that competition
among multi-store firms yields clustering of different firms’ outlets on the segment1. Shimizu
(2002) relaxed the product homogeneity assumption in a single-outlet duopoly framework
and confirmed the central agglomeration result on the segment, but showed that the out-
come on the circle depends on whether goods are complements or substitutes. Yu and Lai
(2003) extended the analysis to a two-store duopoly, and found that on the circle firms ag-
glomerate but stores disperse when rival products are complementary and own products are
substitutes.

Building on Yu and Lai (2003), we further explore the implications of the product com-
plementarity assumption for the location equilibrium of a spatial oligopoly on the circular
city2. However, we consider one particular hypothesis which has not been yet used in Cournot
shipping models, namely the one variety per plant assumption. Modelling firms selling two
complementary varieties is realistic to the extent that often real-life firms simultaneously
produce complementary goods, such as brick and cement, or operating systems and internet
navigators. Moreover, intra-firm complementarity is the natural outcome of any vertical
merger. Based on this assumption, we study first the case of complementarity among all
varieties on the market, which is not only an ’extreme’ extension of Yu and Lai (2003) comple-
mentarity assumption, but also the complete reversal of the usual hypothesis of homogenous

1For the analysis of the circular market see Chamorro-Rivas (2000), Cosnita (2005) and Pal and Sarkar
(2006).

2The circular representation is appropriate for a number of real-life situations, such as circular towns
spreading around lakes, for which consumerscannot afford to cross the lake when going shopping, and there-
fore department stores take up their locations around the lake. More generally speaking, this occurs for
every traffic-jammed city: large shopping malls are located on the outskirts, on the circular belt-way, so
as to avoid consumers the downtown traffic. Furthermore, the dial of a clock being a circle, the circular
market can be equally used for competing television networks choosing time slots for their shows, or airlines
choosing arrival and departure times for their flights.
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product in the spatial Cournot literature. Secondly, we tackle the opposite of Yu and Lai
(2003) framework, i.e. the case of a duopoly characterized by intra-firm complementarity
but inter-firm substitutability3.

In the first case, the intuition that complementarity between all varieties induces total
agglomeration is obvious. However, we equally identify an equilibrium pattern with intra-
firm agglomeration and equidistant firm dispersion. Multiple equilibria obtain in the second
case as well. More precisely, the spatial Cournot duopoly with two-product firms selling
substitutable system goods exhibits both intra-firm agglomeration with equidistant firm
dispersion, but also inter-firm clustering with intra-firm diametrical dispersion. Each time
the alternative equilibrium is sustainable only for low product complementarity, consistent
with the inter-firm competition effect ’dominating’ (weighing more in the location choice
than) the intra-firm one. Moreover, these alternative, less intuitive equilibria are each time
only local maxima, whereas the predictable, intuitive equilibria are global maxima.

The main findings are thus the following. First, we check that the multiple equilibria
property of the circular market extends to the case of multi-store competition with intra-firm
complementarity, regardless of the assumption on inter-firm competition (i.e. substitutability
or complementarity). This outcome underlines that results obtained for single-plant/product
competition do not necessarily extend to multi-plant/product settings, and reminds the
relevance of assumptions on plant/product-level (rather than firm-level) competition.

The remainder of the paper is organized as follows. Section 2 outlines the model and
presents the complete complementarity case, whereas section 3 deals with the intra-firm
complementarity and inter-firm substitutability case. Both are studied under standard lin-
earity assumptions on cost and demand functions, which are used throughout the paper.
The conclusion summarizes the results and compares them with those available so far in the
literature. All detailed computations are grouped in a Technical Appendix available upon
request.

2. Complete Complementarity

Let there be two firms competing in quantities on the unit circular market. Each firm
owns two stores and each store delivers only one good. Assume that all goods (denoted 1, 2,
3 and 4) are symmetrically complementary among them4. Individual market demands at any

3The same setting of affiliates producing complementary goods, and rival stores producing subtitutes
was retained by Tan and Yuan (2003) to examine the incentives to divisionalize of rival conglomerate firms,
competing though in prices and in a non-spatial market.

4Arguably, this type of demand function is rarely considered in the literature, and one may wonder
whether there may be any real world examples for it. One type of example is that of firms producing couples
of intermediate goods, which are all used later on for the production of a more complex final good. Another
example is that of a four-course meal that a customer may obtain by ’buying’ two couples of dishes from
two different restaurants, each proposing only two-dish combinations.
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location x are linear and symmetric, and since each plant sells a different product, the inverse
demand5 will typically be given by: Pi (x) = a − qi (x) + bqj (x) + bqk (x) + bqh (x), where
i, j, k, h ∈ {1, 2, 3, 4} and i �= j �= k �= h with a, b > 0 and independent of x. Consumers are
uniformly distributed along the unitary perimeter of the market and consume all products.

We assume that each good is produced with the same technology exhibiting constant
marginal costs, normalized to zero. Each firm incurs the same linear transport cost to ship
the product to consumers’ locations: t |x− z|, where z is the location from which the product
is shipped6. For simplicity, let t = 1, or equivalently, let a be the transport-cost adjusted
reservation price. Consumers have a prohibitive transport cost, preventing arbitrage, there-
fore firms can and will price discriminate across the set of spatially differentiated markets7.
Given constant marginal delivery costs, a set of independent Cournot equilibria obtains for
each location x. There are no set-up or location costs. The game we consider is two-stage,
with firms choosing first locations (denoted xi) and then competing in quantities. We look
for the SPNE by backwards induction.

At the second stage, equilibrium quantities supplied at each market point by each firm
are determined. Let the first firm (denoted "12”) sell varieties 1 and 2, and the second firm
(denoted "34”) sell varieties 3 and 4. Firms’ profits at each market point x write

Π12(x) = (P1(x)− c1(x)) · q1(x) + (P2(x)− c2(x)) · q2(x) (1)

Π34(x) = (P3(x)− c3(x)) · q3(x) + (P4(x)− c4(x)) · q4(x) (2)

where ci (x) , i = 1, 2, 3, 4 stands for the constant marginal delivery cost of product i to loca-
tion x. Solving the simultaneous system of FOCs gives the equilibrium quantities supplied
at each market point:

q∗1(x) =
(2c1 − 2ab− 2a− 2bc1 + 2bc2 + bc3 + bc4 − b

2c1 − b
2c2 + b

2c3 + b
2c4)

4b+ 8b2 − 4
(3)

q∗2(x) =
(2c2 − 2ab− 2a+ 2bc1 − 2bc2 + bc3 + bc4 − b

2c1 − b
2c2 + b

2c3 + b
2c4)

4b+ 8b2 − 4
(4)

q∗3(x) =
(2c3 − 2ab− 2a+ bc1 + bc2 − 2bc3 + 2bc4 + b

2c1 + b
2c2 − b

2c3 − b
2c4)

4b+ 8b2 − 4
(5)

q∗4(x) =
(2c4 − 2ab− 2a+ bc1 + bc2 + 2bc3 − 2bc4 + b

2c1 + b
2c2 − b

2c3 − b
2c4)

4b+ 8b2 − 4
(6)

To ensure positive quantities for each store throughout the market, let a > 2 and b < 0.5.

5Such linear inverse demands obtain from the linear-quadratic utility function.
6The norm stands for the shorter distance of the two possible ways to ship goods along the circumference.
7This assumption basically defines the shipping model of spatial competition: it is an approximation of

the case where transport cost for firms is far more important than that of consumers - in real life, this is what
justifies distribution networks. In addition, this is compatible with the flexible manufacturing production
systems (see Eaton and Schmitt (1994)), where the firm’s basic product (its location) is customized at a cost
(transport cost) to make it appropriate for a consumer.
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At the first stage, in order to optimally locate their outlets, the duopolists maximize
their overall profits with respect to store/product locations denoted x1 and x2, and x3 and
x4 respectively:

max
x1,x2

Π12(x1, x2; x3, x4) = max
x1,x2




1∫

0

(q∗1(x1, x2;x3, x4;x))
2 dx+

1∫

0

(q∗2(x1, x2; x3, x4; x))
2 dx





(7)

max
x3,x4

Π34(x3, x4; x1, x2) = max
x3,x4




1∫

0

(q∗3(x3, x4;x1, x2;x))
2 dx+

1∫

0

(q∗4(x3, x4; x1, x2; x))
2 dx





(8)

In what follows, we will show that both total store agglomeration as well as intra-firm
store agglomeration with maximal inter-firm dispersion may come out as equilibrium location
patterns. Note that we neither intend to identify all equilibrium locations, nor show the non-
existence of other equilibrium patterns. Our purpose is to show that multiple equilibria may
arise, and we only test the optimality of two types of location patterns.

Assume first that x3 = x4 = 0 and let us show that firm 12 will cluster its stores at the
same point that firm 34 does. Thanks to the symmetry of our setting, this is enough to ensure
that (0, 0, 0, 0) is an equilibrium. For this, we take the FOCs and SOCs w.r.t. x1 and x2 on
the profit of firm 12, then check that the locations x1 = 0, x2 = 0 (or 1) satisfy them both.
Then, still assuming that x3 = x4 = 0, we show by the same token that x1 = x2 = 1/2 may
equally be a location equilibrium. It is intuitive to consider such an equilibrium candidate
due to the fact that the quantity median is not unique on the circle market8. Two cases had
to be discussed, depending on the relative position of x1 and x2: case 1) x2 ∈ [x1, x1 + 1/2],
and case 2) x2 ∈ [x1 + 1/2, 1]. Indeed, given the intra-firm complementarity assumption,
one cannot assume that firm 12 will locate its two stores within distinct disjoint half-circles,
as is typically done when own products are substitutes9. All corresponding (and space-
consuming) computations are displayed in the Technical Appendix available upon request,
but we provide in Appendix 1 at the end of this research note the expressions of firm’s 12
profit and the FOCs and SOCs in the first case mentioned above.

8In spatial models with location choice it has long been established that the FOCs simply translate what
is called the quantity median property, i.e. total quantity sold by a plant to the left of its location needs
to equal that to the right, if this location is to be optimal. The crucial difference between the linear and
the circular frameworks is that on the segment, a firm’s quantity median is unique, whereas on the circle
it is not. Actually, for given competitors’ locations, if a point µ on the circle satisfies the quantity median
property for a firm, it is straightforward to see that the diametrically opposite location µ+ 1/2 does it too.

9With homogenous products, to minimize transport costs, firms supply to each location from the closest
store only.
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The results we obtain are the following: total agglomeration of all four stores is an equilib-
rium location pattern whatever the degree of product complementarity, whereas diametrical
firm dispersion with intra-firm store agglomeration is also an equilibrium location pattern
for low product complementarity, i.e. b < 0.275. Given the possibility of multiple equilibria,
our analysis would be incomplete without a global optimality test: the payoff functions are
not globally concave in our setting, therefore we need to check whether both equilibrium
patterns represent global maxima. In the case of total store agglomeration, the profit of the
firm 12 equals 1

24(2b−1)2
(12a2 − 6a+ 1), whereas in the second type of equilibrium it amounts

to
(

1
24(2b−1)2

(12a2 − b− 6a+ b2 + 1)
)
. Simple computations yield that total store agglom-

eration is a global maximum whereas intra-firm clustering with inter-firm dispersion is only
a local maximum. To sum up, we obtain the following:

Result 1: On the circular market, a two-product duopoly producing symmetrically com-

plementary varieties and competing in quantities will exhibit a global-maximum location equi-

librium consisting of the total agglomeration of stores regardless of the value of the differenti-

ation parameter b ∈ (0, 0.5). A local-maximum location equilibrium also exists if b < 0.275,
involving intra-firm agglomeration with diametrical firm dispersion.

Proof : See the Technical Appendix.

The first type of location pattern identified is clearly the extension of Yu and Lai (2003),
since complementarity between a firm’s products induces its own stores to cluster. Indeed,
intra-firm complementarity means it is optimal to match a higher quantity of the other
affiliate by a higher quantity of its own, so the best two stores owned by the same firm can
do is share the same location. As a consequence, firms behave as single-store producers,
and by the same token, given the complementarity between their respective outputs, they
equally cluster.

Thus we are left to question why the alternative, diametrical pattern involves inter-
firm dispersion, and especially why this is no longer possible for the whole range of the
complementarity parameter. The answer is provided by the Best Reply functions. At plant
level, it is straightforward to notice that own output increases more with the other affiliate’s
output than with the quantity of a rival outlet: for instance, BR1 = a−c1

2
+ bq2 +

b
2
q3 +

b
2
q4.

In other words, a firm’s outlets/product lines value more the intra-firm complementarity
than the inter-firm one. The latter can only be ’neglected’ for low values of b, which can

also be seen at firm level, by considering a firm’s aggregate Best Reply: BR12 =
a−

c1+c2
2

1−b
+

b
1−b
(q3 + q4). Inter-firm complementarity can be ’neglected’ only if this complementarity

is not too strong (b < 0.275), since the coefficient b
1−b

is increasing with b, and thus can
only be approximated with 0 for low enough values of b. To put it differently, there is no
dispersion force in our setting, but two agglomerations forces, the intra-firm complementarity
and inter-firm complementarity. Total store agglomeration necessarily obtains when both

5
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agglomeration forces are at work, whereas the second type of location pattern involving firm
dispersion is explained by the lack of the second agglomeration force (and not by the presence
of a dispersion one).

It is nevertheless obvious that for any positive value of b in the relevant range, total store
agglomeration necessarily yields a higher profit for firms than diametrical dispersion. One
might then easily conclude that the second location pattern we have identified, character-
ized by partial agglomeration with equidistant dispersion in which firms ’forget’ about the
complementarity with the rival products, is actually irrelevant. The point we make with
this respect is the following: albeit a local maximum, this location pattern guarantees op-
timal locations for the firms. Therefore, if faced with some external constraint preventing
them from occupying the globally-optimal locations, the firms will cope by resorting to the
alternative, locally-optimal location equilibrium10.

We go on next to look into the case of complementarity between own varieties and
substitutability between rival ones, so as to further explore the implications of the intra-firm
complementarity assumption.

3. Intra-firm Complementarity with Inter—firm Substitutability

In this section, we deal with the opposite framework to that considered by Yu and Lai
(2003). More precisely, instead of considering two complementary varieties produced each by
one rival firm in its own two stores, we assume instead that firms produce two substitutable
system goods, meaning that a firm’s own plants produce complementary products, and that
the firm’s couple of varieties is substitute for the rival’s ones11. Keeping the same linearity
assumptions and notations as before, let firm "12" ship varieties 1 and 2, complements, and
let firm "34" ship products 3 and 4, also complements. However, the couples 1 and 3, and
2 and 4 are now perfect substitutes respectively. Therefore, the system of linear market
demands is the following:

P13(x) = a− (q1(x) + q3(x)) + b(q2(x) + q4(x)) (9)

P24(x) = a− (q2(x) + q4(x)) + b(q1(x) + q3(x)) (10)

At the second stage of the game, firms’ profits at each market point x write now

Π12(x) = (P13(x)− c1(x)) · q1(x) + (P24(x)− c2(x)) · q2(x) (11)

Π34(x) = (P13(x)− c3(x)) · q3(x) + (P24(x)− c4(x)) · q4(x) (12)

10By external constraint we refer to some existing regulation which prohibits firms from choosing identical
locations. For instance, in France, chemist shops cannot agglomerate, but must obey a certain minimum
distance between their respective locations, which depends upon the density of the population.

11A real-world example of such a situation is that of firms selling rival operation systems and internet
navigators compatibe with them. Another example, in the vein of the one provided in the previous section,
is that of restaurants providing rival two-course menus, composed of starters and main dish for instance.

6
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where ci (x) , i = 1, 2, 3, 4 stands for the constant marginal delivery cost of product i to loca-
tion x. Solving the simultaneous system of FOCs gives the equilibrium quantities supplied
at each market point:

q∗1(x) =
1

3b2 − 3
(2c1 − ab− a− c3 + 2bc2 − bc4) (13)

q∗2(x) =
1

3b2 − 3
(2c2 − ab− a− c4 + 2bc1 − bc3) (14)

q∗3(x) =
1

3b2 − 3
(2c3 − ab− c1 − a− bc2 + 2bc4) (15)

q∗4(x) =
1

3b2 − 3
(2c4 − ab− c2 − a− bc1 + 2bc3) (16)

where a > 2 and b ∈ (0, 1) to ensure positive quantities throughout the market.
As before, at the first stage, to optimally locate their outlets, the duopolists maximize

their overall profits with respect to store locations denoted x1 and x2, and x3 and x4 respec-
tively:

max
x1,x2

Π12(x1, x2; x3, x4) = max
x1,x2




1∫

0

(q∗1(x1, x2;x3, x4;x))
2 dx+

1∫

0

(q∗2(x1, x2; x3, x4; x))
2 dx





(17)

max
x3,x4

Π34(x3, x4; x1, x2) = max
x3,x4




1∫

0

(q∗3(x3, x4;x1, x2;x))
2 dx+

1∫

0

(q∗4(x3, x4; x1, x2; x))
2 dx





(18)

As before, our purpose is neither to identify all equilibrium locations, nor show the non-
existence of other equilibrium patterns, but merely check that multiple equilibria may arise.
Again, we are going to focus on two types of location patterns.

We assume first that x3 = x4 = 0 and show that firm 12 will cluster its stores at the
diametrically opposite point. Thanks to the symmetry of our setting, this is enough to
ensure that (1/2, 1/2, 0, 0) is an equilibrium. For this, we take the FOCs and SOCs w.r.t.
x1 and x2 on the profit of firm 12, then check that the locations x1 = x2 = 1/2 satisfy them
both. We argue that the second type of location pattern will involve intra-firm dispersion
and rival store agglomeration. For this, we assume that x3 = 0, x4 = 1/2 and check that
x1 = 1/2, x2 = 1 may come out as a location equilibrium through the same first order and
second order approach. Again, two cases had to be discussed, depending on the relative
position of x1 and x2: case 1) x2 ∈ [x1, x1 + 1/2], and case 2) x2 ∈ [x1 + 1/2, 1].

We obtain the following result: intra-firm agglomeration with equidistant firm dispersion
is an equilibrium location pattern whatever the value of the intra-firm complementarity

7
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parameter b in the relevant range, but intra-firm diametrical dispersion with rival store
agglomeration is also an equilibrium location pattern if b < 0.171. However, the profit
comparison between these two types of equilibria reveals that the former is a global maximum
whereas the second is only a local maximum. To sum up, we obtain the following:

Result 2: A symmetric two-plant duopoly selling substitutable system goods and compet-

ing in quantities on the circular market has a global-maximum location equilibrium consisting

of intra-firm agglomeration and inter-firm equidistant dispersion for all levels of the intra-

firm complementarity parameter b ∈ (0, 1). If if the complementarity parameter is low enough

(b < 0.171), then a local-maximum location equilibrium also exists, involving intra-firm di-

ametrical dispersion and inter-firm agglomeration, i.e. each firm locating its stores at the

opposite ends of the same diameter.

Proof : See the Technical Appendix for the complete computations and a sketch of the
proof in case 2). in Appendix 2 at the end of this note.

Following the basic intuition that firms behave as single-product entities because of the
inter-firm complementarity, and given Pal’s (1998) result of equidistant dispersion for firms
selling substitutes on the circle, intra-firm agglomeration with equidistant dispersion of rival
varieties is necessarily obtained in equilibrium. The second type of location pattern is less
intuitive, and in order to answer the question why own products can disperse/differentiate
and rival varieties can agglomerate/be identical although own products are complements
but rival ones are substitutes, we turn again to the Best Reply functions. For instance,
BR1 = a−c1

2
− 1

2
q3 + bq2 +

b
2
q4. Note that the only dispersion force stems from the direct

substitutability between varieties 1 and 3, and that its intensity is constant. That is why,
in both equilibrium patterns obtained, direct substitutes (such as 1 and 3, or 2 and 4) are
always diametrically opposite. However, when b is very low (i.e. sufficiently close to 0), the
direct and indirect complementarity effects (such as between varieties 1 and 2 and 1 and 4)
are roughly equal. This explains the two alternative equilibria, exhibiting either intra-firm
agglomeration (complementary varieties 1 and 2 sharing the same location) or inter-firm
agglomeration (indirectly complementary varieties 1 and 4 sharing the same location).

As in the previous case of complete complementarity throughout the market, the more
intuitive location pattern ensures a higher profit for each firm, because the direct, intra-
firm complementarity weighs more in the profit function than the indirect complementarity
w.r.t. one of the rival products. But as before, our point concerning the local maximum
location pattern is that whenever the global one may be unattainable, due for instance to
some industry-specific regulation, then the firms will be able to resort to an alternative
profit-maximizing location pattern for their production/distribution outlets.

Note finally that although both our framework and Yu and Lai’s (2003) similarly yield
agglomeration between complementary varieties and equidistant dispersion of substitutable
ones, the difference lies with the ownership pattern of the various stores. Indeed, a quick look
at the Best Reply function in Yu and Lai (2003) case - take variety 1 for the sake of an easy

8
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comparison, BR1 = a−c1
2
−q3+

b
2
q2+

b
2
q4, reveals that the direct intra-firm substitutability is

always dominant, so the equilibrium pattern necessarily involves intra-firm dispersion of own
affiliates (differentiation of own products). Both the direct and the indirect complementarity
(between varieties 1 and 2 or 1 and 4) weigh equally within the Best Reply function, but the
two possible patterns resulting are basically the same, since they boil down to rival product
lines agglomerating (either clustering between varieties 1 and 2, or between 1 and 4). In
contrast, in our setting, once substitutable varieties disperse, the two alternatives left are not
equivalent, to the extent that the first pattern involves clustering of strongly complementary
products, whereas the second involves clustering of weakly complementary rival varieties.

4. Conclusion

Most of the papers on spatial competition with location choice have dealt with homoge-
nous products, one of the reasons being that the spatial framework naturally yields prod-
uct differentiation. Homogeneity is particularly important for Cournot spatial competition,
because together with the strategic substitutability it typically generates dispersion. We
contribute to the literature by tackling the issue of location choice on the circular market for
two-store firms, and allowing each store to deliver a different product. We assume intra-firm
complementarity and ’combine’ it alternatively with complementarity between rival varieties
or substitutability between them. In both settings, we show the existence of two types of
location equilibria, albeit one being a global maximum and the other a local maximum.
The latter is sustainable only for low product complementarity, but its existence is enough
to extend the property of multiple equilibria of the circular market to this multi-product
setting. Below we present a table summarizing our results and comparing them with those
obtained so far in the literature. To sum up, this research note reminds that the assump-
tions on intra-firm as well as on inter-firm competition may be relevant for determining the
equilibrium pattern in a spatial model with location choice and various types of product
differentiation.
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Appendix 1

Proof of Result 1 - Firm’s 12 profit expression and the FOCs and SOCs in case 1).x2 ∈
[x1, x1 + 1/2] :
Π12 = Π1 +Π2 =

∫ x1
0

(
(q∗1)

2 + (q∗2)
2) dx+

∫ x2
x1

(
(q∗1)

2 + (q∗2)
2) dx

+
∫ 1/2
x2

(
(q∗1)

2 + (q∗2)
2) dx+

∫ 1/2+x1
1/2

(
(q∗1)

2 + (q∗2)
2) dx

+
∫ 1/2+x2
1/2+x1

(
(q∗1)

2 + (q∗2)
2) dx+

∫ 1
1/2+x2

(
(q∗1)

2 + (q∗2)
2) dx
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=

x1∫

0






(
(2(x1−x)−2ab−2a−2b(x1−x)+2b(x2−x)+bx+bx−b2(x1−x)−b2(x2−x)+b2x+b2x)

4b+8b2−4

)2

+

(
(2(x2−x)−2ab−2a+2b(x1−x)−2b(x2−x)+bx+bx−b2(x1−x)−b2(x2−x)+b2x+b2x)

4b+8b2−4

)2




 dx

+

x2∫

x1






(
(2(x−x1)−2ab−2a−2b(x−x1)+2b(x2−x)+bx+bx−b2(x−x1)−b2(x2−x)+b2x+b2x)

4b+8b2−4

)2

+

(
(2(x2−x)−2ab−2a+2b(x−x1)−2b(x2−x)+bx+bx−b2(x−x1)−b2(x2−x)+b2x+b2x)

4b+8b2−4

)2




 dx

+

1/2∫

x2






(
(2(x−x1)−2ab−2a−2b(x−x1)+2b(x−x2)+bx+bx−b2(x−x1)−b2(x−x2)+b2x+b2x)

4b+8b2−4

)2

+

(
(2(x−x2)−2ab−2a+2b(x−x1)−2b(x−x2)+bx+bx−b2(x−x1)−b2(x−x2)+b2x+b2x)

4b+8b2−4

)2




 dx

+

1/2+x1∫

1/2






(
(2(x−x1)−2ab−2a−2b(x−x1)+2b(x−x2)+b(1−x)+b(1−x)−b2(x−x1)−b2(x−x2)+b2(1−x)+b2(1−x))

4b+8b2−4

)2

+

(
(2(x−x2)−2ab−2a+2b(x−x1)−2b(x−x2)+b(1−x)+b(1−x)−b2(x−x1)−b2(x−x2)+b2(1−x)+b2(1−x))

4b+8b2−4

)2




 dx

+

1/2+x2∫

1/2+x1






(
1

4b+8b2−4

)2



2(1− x+ x1)− 2ab− 2a

−2b(1− x+ x1) + 2b(x− x2) + b(1− x) + b(1− x)
−b2(1− x+ x1)− b

2(x− x2) + b
2(1− x) + b2(1− x)





2

+
(

1
4b+8b2−4

)2



2(x− x2)− 2ab− 2a

+2b(1− x+ x1)− 2b(x− x2) + b(1− x) + b(1− x)
−b2(1− x+ x1)− b

2(x− x2) + b
2(1− x) + b2(1− x)





2






dx

+

1∫

1/2+x2






(
1

4b+8b2−4

)2



2(1− x+ x1)− 2ab− 2a

−2b(1− x+ x1) + 2b(1− x+ x2) + b(1− x) + b(1− x)
−b2(1− x+ x1)− b

2(1− x+ x2) + b
2(1− x) + b2(1− x)





2

+
(

1
4b+8b2−4

)2







2(1− x+ x2)− 2ab− 2a

+2b(1− x+ x1)− 2b(1− x+ x2) + b(1− x) + b(1− x)
−b2(1− x+ x1)− b

2(1− x+ x2) + b
2(1− x) + b2(1− x)









2






dx

=
(
− 1
24

)
(2b− 1)−2 (b+ 1)−2






6a− 2b+ 12ab− 24bx1x2 − 12a
2 − b2

+6ab2 − 24a2b+ 18bx21 + 8bx
3
1 + 18bx

2
2 − 24bx

3
2

+48bx1x
2
2 − 48bx

2
1x2 + 36b

2x1x2 − 6b
4x1x2 − 12a

2b2 − 12b2x21
−32b2x31 − 12b

2x22 − 6b
3x21 + 16b

2x32 + 8b
3x31 − 6b

3x22
−3b4x21 + 8b

3x32 + 12b
4x31 − 3b

4x22 + 4b
4x32 − 72b

2x1x
2
2

+72b2x21x2 + 12b
4x1x

2
2 − 12b

4x21x2 − 1






∂Π12
∂x1

=
(
−1
4

)
(2b− 1)−2 (b+ 1)−2




6x1 − 4x2 − 4bx1 + 6bx2 − 16x1x2 + 24bx1x2
+4x21 + 8x

2
2 − 16bx

2
1 − 2b

2x1 − 12bx
2
2 − b

3x1
−b3x2 − 4b

3x1x2 + 4b
2x21 + 6b

3x21 + 2b
3x22



 b

11

2465



Economics Bulletin, 2011, Vol. 31 no.3 pp. 2454-2467

∂Π12
∂x2

=
(
−1
4

)
(2b− 1)−2 (b+ 1)−2




6x2 − 4x1 + 6bx1 − 4bx2 + 16x1x2 − 24bx1x2
−8x21 − 12x

2
2 + 12bx

2
1 + 8bx

2
2 − 2b

2x2 − b
3x1

−b3x2 + 4b
3x1x2 + 4b

2x22 − 2b
3x21 + 2b

3x22



 b

∂2Π12
∂x2

1

= 1
4
(2b− 1)−2 (b+ 1)−2

(
4b− 8x1 + 16x2 + 32bx1 − 24bx2 + 2b

2

+b3 − 8b2x1 − 12b
3x1 + 4b

3x2 − 6

)
b

∂2Π12
∂x2

2

=
(
−1
4

)
(2b− 1)−2 (b+ 1)−2

(
16x1 − 4b− 24x2 − 24bx1 + 16bx2 − 2b

2

−b3 + 8b2x2 + 4b
3x1 + 4b

3x2 + 6

)
b

Appendix 2

Sketch of Proof of Result 2 in case 2).x2 ∈ [x1 + 1/2, 1] :
Assume x3 = 0, x4 = 1/2 and let us show that x1 = 1/2, x2 = 0 may come out as a

location equilibrium:

Π12 = Π1+Π2 =
∫ x1
0

(
(q∗1)

2 + (q∗2)
2) dx+

∫ x2−1/2
x1

(
(q∗1)

2 + (q∗2)
2) dx+

∫ 1/2
x2−1/2

(
(q∗1)

2 + (q∗2)
2) dx

+
∫ x1+1/2
1/2

(
(q∗1)

2 + (q∗2)
2) dx+

∫ x2
x1+1/2

(
(q∗1)

2 + (q∗2)
2) dx+

∫ 1
x2

(
(q∗1)

2 + (q∗2)
2) dx

=
∫ x1
0

( (
1

3b2−3
(2(x1 − x)− ab− a− x+ 2b(1− x2 + x)− b(1/2− x))

)2

+
(

1
3b2−3

(2(1− x2 + x)− ab− a− (1/2− x) + 2b(x1 − x)− bx)
)2

)

dx

+
∫ x2−1/2
x1

( (
1

3b2−3
(2(x− x1)− ab− a− x+ 2b(1− x2 + x)− b(1/2− x))

)2

+
(

1
3b2−3

(2(1− x2 + x)− ab− a− (1/2− x) + 2b(x− x1)− bx)
)2

)

dx

+
∫ 1/2
x2−1/2

( (
1

3b2−3
(2(x− x1)− ab− a− x+ 2b(x2 − x)− b(1/2− x))

)2

+
(

1
3b2−3

(2(x2 − x)− ab− a− (1/2− x) + 2b(x− x1)− bx)
)2

)

dx

+
∫ x1+1/2
1/2

( (
1

3b2−3
(2(x− x1)− ab− a− (1− x) + 2b(x2 − x)− b(x− 1/2))

)2

+
(

1
3b2−3

(2(x2 − x)− ab− a− (x− 1/2) + 2b(x− x1)− b(1− x))
)2

)

dx

+
∫ x2
x1+1/2

( (
1

3b2−3
(2(1− x+ x1)− ab− a− (1− x) + 2b(x2 − x)− b(x− 1/2))

)2

+
(

1
3b2−3

(2(x2 − x)− ab− a− (x− 1/2) + 2b(1− x+ x1)− b(1− x))
)2

)

dx

+
∫ 1
x2

( (
1

3b2−3
(2(1− x+ x1)− ab− a− (1− x) + 2b(x− x2)− b(x− 1/2))

)2

+
(

1
3b2−3

(2(x− x2)− ab− a− (x− 1/2) + 2b(1− x+ x1)− b(1− x))
)2

)

dx

=
(
− 1
54

)
(b+ 1)−2 (b− 1)−2






6a− 11b+ 12ab+ 24x2 − 96bx1 + 48bx2 + 288bx1x2
−12a2 − 6b2 + 6ab2 − 24a2b− 12x21 + 16x

3
1 − 36x

2
2 + 16x

3
2

−120bx21 − 96bx
3
1 − 72bx

2
2 + 24b

2x2 + 32bx
3
2 − 192bx1x

2
2 + 192bx

2
1x2

−12a2b2 − 12b2x21 + 16b
2x31 − 36b

2x22 + 16b
2x32 − 6

The FOCs write:
∂Π12
∂x1

= 4
9
(b+ 1)−2 (b− 1)−2

(
4b+ x1 + 10bx1 − 12bx2 − 16bx1x2
−2x21 + 12bx

2
1 + b

2x1 + 8bx
2
2 − 2b

2x21

)

∂Π12
∂x2

=
(
−4
9

)
(b+ 1)−2 (b− 1)−2

(
2b− 3x2 + 12bx1 − 6bx2 − 16bx1x2

+b2 + 2x22 + 8bx
2
1 + 4bx

2
2 − 3b

2x2 + 2b
2x22 + 1

)
.
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It is straightforward to check that both FOCs are satisfied for x1 = 1/2, x2 = 1.
The SOCs:
∂2Π12
∂x2

1

=
(
−4
9

)
(b+ 1)−2 (b− 1)−2 (4x1 − 10b− 24bx1 + 16bx2 − b

2 + 4b2x1 − 1)
∂2Π12
∂x2

2

= 4
9
(b+ 1)−2 (b− 1)−2 (6b− 4x2 + 16bx1 − 8bx2 + 3b

2 − 4b2x2 + 3) ,

and yield, respectively, for x1 = 1/2, x2 = 1:

[
− 4
9(b−1)2(b+1)2

(−6b+ b2 + 1)
4

9(b−1)2(b+1)2
(6b− b2 − 1)

]

.

It is easy to check that 4
9(b−1)2(b+1)2

(6b− b2 − 1) < 0 for any b < 0.171 57.
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