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Abstract 

Financial literature considers volatility as a good proxy for the risk level and thus the crucial parameter in many 
financial techniques and strategies. As such, the aim of this paper is to analyse the evolution of time series volatility 
and detect significant long-term variance changes. Building up on the variance ratio detection technique introduced by 
Tsay (1988), our paper extends it in two ways: first, we propose the computation of a moving variance ratio 
implemented on a selected part of the series, thus reducing the amount of calculus and increasing the reliability and 
second, as in reality permanent variance changes are almost inexistent, we proceed to an adjustment on a specified 
part of the series only after the detected variance change. Our moving variance ratio technique proves its efficiency in 
detecting variance changes and removing them from the series, both on simulated and real financial data. More 
specifically, two significant variance changes are detected within the series of the Hang Seng daily log-returns between 
1994 and 2007: the first one on August 15, 1997 and can be linked to the Asian financial crisis, and the second one on 
July 27, 2001 corresponding to the beginning of a high volatility regime in emerging markets following the Internet 
bubble crash along with the first signs of the financial crisis in Argentina.
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1. Introduction 
Structure changes and outliers are very common in financial time series data. Most of these 

extraordinary observations can easily be attributed to dramatic events such as wars, crashes or political 
changes. The presence of level shifts and outliers can mislead time series analysis and thus lead to 
erroneous conclusions due to important model misspecification. If the type and date of the 
disturbances are known, their effects can easily be controlled. However, in practice, the date and 
magnitude of such events are seldom known ex ante. Therefore, detecting and handling outliers, level 
shifts and variance changes in time series becomes crucial. Several approaches were proposed to 
identify these abnormal patterns.  

Abraham and Box (1979) use a Bayesian method, whereas Martin and Yohai (1986) consider 
outliers as anomalies generated by a deterministic probability distribution. Fox (1972) establishes two 
parametric models which have been adopted by Chang (1982), who develops an iterative procedure 
for outlier detection. This iterative procedure is widely applied, especially by Chang and Tiao (1983), 
Hillmer et al. (1983) and Tsay (1986). Tsay (1986) uses both Chang and Tiao (1983) and the Extended 
Sample Autocorrelation Function (ESACF) model identification method developed by Tsay and Tiao 
(1984). This modelling enables the distinction between an additive outlier, i.e. a “gross error” model 
that affects a single observation, and an innovational outlier, i.e. a disturbance that affects the process 
at the time it occurs but also the following observations. It is an iterative procedure based on a simple 
computation using basic linear regression techniques that enables outlier detection and classification 
along with model specification that includes the identified outliers.  

Outlier detection highlights non-linearity in most financial time series. Generalized Autoregressive 
Conditionally Heteroscedastic (GARCH) variance models, introduced and developed by Engle (1982) 
and Bollerslev (1986) are also able to capture this non-linearity, but they do not always provide a 
satisfactory explanation for the non-Gaussian behaviour. Although model misspecifications could be 
the source of this non-normality, the variety of models that exhibit such a departure from normality in 
the residuals supports the idea that excess skewness and kurtosis are caused by the presence of outliers 
in financial time series. Hence, a recent strand of the financial literature focuses on the detection and 
correction qualities of different outlier identification methods within the GARCH framework (see for 
example Franses and Ghijsels, 1999; Zhang and King, 2005; Bali and Guirguis, 2006 or Ané et al., 
2007 among others).  

The detection of outliers is a significant step towards level shift and variance change detection. An 
outlier can be defined as a single, big and unpredictable value. Outliers are usually disparate within the 
series, even though sometimes they may cluster, especially over periods of consecutive 
macroeconomic events. In contrast, level shifts and variance changes are considered as long-term 
changes. The detection of level shifts in time series starts when the impact of a specified intervention 
has to be measured. Early evidence on level shifts focuses on environmental (Box and Tiao, 1975) or 
social issues (Harvey and Durbin, 1986; Hsu, 1977). Remarkable contributions in detecting structural 
changes with unknown break dates are due to Bai and Perron (1998, 2003a, 2003b), synthesized in 
Perron (2006). Their different papers on multiple structural changes introduce and confront different 
issues for univariate regressions, namely the selection of the number of breaks, the algorithms to 
compute the estimates, the consistency of the break dates and the confidence intervals for these dates. 
Alternative approaches and extensions of this framework, including multivariate analysis, can be 
found in Liu et al. (1997), Bai et al. (1998), Bai (2000), Perron and Qu (2006),  Kejriwal and Perron 
(2006a,b), Qu and Perron (2007a), among others.  

Despite this wide amount of research, testing for structural changes in the variance of the 
regression error is rather scarce. Tsay (1988) proposes a unified method for detecting and handling 
outliers, level shifts and variance changes for univariate time series based on variance ratios. 
Alternative, ad-hoc approaches consist in applying standard sup-Wald type tests (Bai and Perron, 
1998) to identify changes in the mean of the absolute value of the estimated residuals, or extensions of 
the CUSUM of squares test (introduced by Brown et al., 1975), as in Deng and Perron (2008)1, 
following Inclan and Tiao (1994). However, even though these tests provide accurate break point 

                                                           
1 See also Horvath (1993), Davis et al. (1995), Qu and Perron (2007a), Perron and Zhou (2008) and Zhou and 
Perron (2008). 
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detections, they do not provide any indication on the impact induced by these breaks on the variance, 
namely in terms of permanent or transient change. 

In this paper we aim at analysing the evolution of time series volatility and detecting significant 
long-term variance changes. Given that volatility is considered a good proxy for the risk level, 
identifying the existence of different levels of variance could then be used by many financial 
techniques and strategies, like derivatives pricing and hedging. Volatility fluctuates, never diverges, 
and sometimes undergoes instant changes that could be transient or permanent. Permanent, i.e. 
definitive, changes are very rare, even in very volatile markets. It is noticeable that due to 
extraordinary events such as wars, crisis and political changes, most financial series experience a 
change in the mean level very often accompanied by a change in variance. This abnormal level of 
volatility may bias the estimation of risk. Detecting and removing such anomalies would provide a 
better picture of the evolution of past volatility. Thus, a more accurate pricing of derivatives could be 
obtained. If no adjustments were made, the level of volatility could over/understate the level of risk 
with direct consequences for the price and efficiency of the hedge. For example, the derivative would 
be over/under-priced and arbitrage strategies could become potentially profitable.    

We develop the variance ratio detection technique introduced by Tsay (1988) in two ways. First, 
Tsay (1988) uses a variance ratio that takes into account all the residuals after and before a date “t”. 
We implement this computation only on a selected part of the series. This will thus reduce the amount 
of calculus and increase the reliability. Second, in reality, permanent variance changes are extremely 
rare. The change in variance does not last infinitely and its amplitude reduces gradually. This means 
that only a specified part of the series after the detected variance change should be adjusted in contrast 
with Tsay (1988) procedure, in which the standardization is applied to all the observations following 
the detected change.  

This paper is organized as follows. The next section explains, in a simulation framework, the 
variance change detection technique that we propose. Then we apply this technique on real data, 
namely the Hang Seng index from 1994 to 2007. A comparison with the results provided by a standard 
Bai and Perron (1998) test for break points identification is also provided. The last section concludes 
and indicates potential further developments. 
 

2. Variance changes detection using iterative procedures 
The aim of this section is to present and test the moving variance ratio technique proposed in this 

paper on simulated data. More specifically, we will focus on variance shift detection. As mentioned 
previously, our framework builds on the method introduced and developed by Tsay (1988), i.e. a 
variance ratio method using an iterative procedure decomposed into 4 consecutive steps: Gaussian 
Autoregressive Moving Average (ARMA) model specification, variance ratio computation using the 
residuals of the ARMA model from the first step, type and date of the variance change identification 
(the two extreme values of the variance ratio are identified, say  the highest value and  the 
lowest; then, and is compared with a pre-specified critical value C)

max,Vλ min,Vλ

),( 1
min,max,

−= VVV Max λλλ 2, 
variance change effect removal through a standardization process followed by ARMA model 
reestimation. We start by introducing  denoting the distance, i.e. length of the selected part of the 
series used for the calculation of the variance ratio. We test the moving variance ratio technique on 
simulated series containing a single variance change, and then extend it on series exhibiting several 
simulated variance changes.  

d

The first series is a vector whose components are independent, normally distributed random 
variables with zero mean and known variances, including a change in variance at time . For each 

, the variance ratio is not computed on the whole series but only on a part of it. Hence,  is defined 
as the distance from  on which we compute the variance ratio . We compute the ratio of the 
variance of the d -data following  on the variance of the -data preceding  and repeat it for 
each . When an upward (resp. downward) movement in variance occurs, we notice a corresponding 
rise (resp. drop) in the value of this ratio. If the change in variance is significant, a small value for d  

0d

id d

id ir̂

id d id

id

                                                           
2 If CV >λ , a variance change occurs at the date at which  is detected, say , with C= 3.5 Vλ 0d
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may be enough to efficiently detect the exact changing point. On the contrary, when the change in 
variance is small, a larger value of  may be needed. Hence, the moving variance ratio  can be 
defined as follows: 

d ir̂
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1
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where is the sample size and N Z ′  the mean of the -values on which the variance is computed.  d
The first simulation that we implement consists in generating 10,000 data-points with a change in 

variance at time . The 56 generated series are the combination of eight 5,000x1 vectors of 
independent, normally distributed random variables described by 

5001* =d
),0( σN  with . 

To detect the exact date of the variance change, we first need to define  denoting the largest  

and  for the smallest . Thus, the detected change  occurs at .  

{ }20,15,8,6,4,3,2,1=σ

max,Vλ ir̂

min,Vλ ir̂ 0d ),( 1
min,max,0

−= VVVd Max λλλ

The following table shows the impact of different values of . We can notice that when the 
standard deviation of the first part of the series is much lower than the standard deviation of the second 
part, a  equal to 20 is enough to almost perfectly detect the variance change at the exact time point 

.  Moreover, when the standard deviations are quite close, has to be higher to allow a 
significant detection. 39 of these 56 series only need equal to 20 to detect the exact date with less 
than 0.2% divergence. The exact changing point of these 56 series has been detected with an error that 
is less than 2.5%. 

d

d
5001* =d d

d

 
Table 1. Variance Shifts Detection when N=10,000 and d*=5001. The series follow a Gaussian distribution 

described by N(0,σ) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

N = 10,000 d=20 d=80
d* = 5001 d=60 d>=200 N(0,1) N(0,2) N(0,3) N(0,4) N(0,6) N(0,8) N(0,15) N(0,20)

Max ri 2,669 4,026 5,797 3,797 6,175 5,558 7,210
Min ri 0,263 0,139 0,057 0,023 0,019 0,007 0,003
λv 3,809 7,188 17,502 43,397 52,467 148,464 324,358

Detected do 5005 5003 4998 5005 5005 5005 5006
Max ri 3,767 2,116 2,545 3,930 6,384 6,384 7,210
Min ri 0,310 0,436 0,243 0,103 0,060 0,021 0,010
λv 3,767 2,294 4,116 9,743 16,632 47,104 98,895

Detected do 4977 4977 4998 5001 5002 5004 5004
Max ri 11,915 4,833 1,738 2,322 2,483 6,377 7,210
Min ri 0,200 0,245 0,477 0,275 0,232 0,089 0,040
λv 11,915 4,833 2,096 3,631 4,310 11,242 24,818

Detected do 5001 5000 5050 5019 5002 5000 5007
Max ri 17,486 7,141 4,478 1,501 2,549 4,087 7,210
Min ri 0,200 0,245 0,238 0,446 0,308 0,126 0,091
λv 17,486 7,141 4,478 2,241 3,249 7,944 11,037

Detected do 5000 4998 4994 5126 5000 4999 5001
Max ri 34,612 16,136 9,343 2,786 1,446 3,216 7,210
Min ri 0,200 0,245 0,238 0,365 0,581 0,188 0,128
λv 34,612 16,136 9,343 2,786 1,722 5,323 7,790

Detected do 5004 5006 5006 5010 5014 5000 5001
Max ri 33,242 13,784 7,513 4,087 1,753 2,642 7,210
Min ri 0,200 0,245 0,238 0,294 0,676 0,226 0,126
λv 33,242 13,784 7,513 4,087 1,753 4,420 7,956

Detected do 5000 4998 4994 4991 4937 5000 5005
Max ri 161,156 67,138 32,702 12,504 8,107 4,596 1,746
Min ri 0,123 0,145 0,200 0,126 0,200 0,311 0,372
λv 161,156 67,138 32,702 12,504 8,107 4,596 2,685

Detected do 5002 5002 4994 5004 5004 4998 5010
Max ri 225,948 80,788 47,160 14,953 7,366 5,362 1,698
Min ri 0,064 0,064 0,064 0,096 0,144 0,214 0,677
λv 225,948 80,788 47,160 14,953 7,366 5,362 1,698

Detected do 5001 5001 4998 4990 4999 5010 4998

N(0,20)

Part 1

Part 2

N(0,1)

N(0,2)

N(0,3)

N(0,4)

N(0,6)

N(0,8)

N(0,15)

This first illustration shows that in the case of a single variance change, the moving variance ratio 
technique is able to accurately detect the shift in variance at the exact point. The upper triangle 
represents the down-changes while the lower triangle represents the up-changes. Black cells 
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correspond to cases where the variance does not experience any change. We can also notice an 
asymmetry between the upper and lower parts of the table. Indeed, 11 of the 17 series which need a d  
higher than 20 are situated in the upper part of the table corresponding to down-changes in variance. 
Hence, down-changes are harder to properly detect than up-changes which in turn may come from the 
fact that volatility increases have larger impact than volatility decreases, i.e. volatility asymmetry. 

The second simulation consists in the detection of two variance changes. In the case of multiple 
changes, an adjustment of the series has to be conducted to enable the next variance change detection. 
This adjustment can be assimilated to a standardization of the series and will be detailed at step 3. The 
stepwise procedure thus becomes: 
Step 1. Compute the moving variance ratio  on the series. ir̂
Step 2. Find the two extreme values and . and then compute . 

denotes the selected value among and .  

max,Vλ min,Vλ ),( 1
min,max,0

−= VVVd Max λλλ
*

0Vdλ max,Vλ min,Vλ
Step 3. Adjust the series  by a standardization process as follows: iZ *

iZ
        if t<d0      

            (2) 
           if t≥d0

where Z is the sample mean of  and go back to Step 1.  iZ
⎪⎩ −+ )2 Zλ
⎪
⎨=
⎧

− (/1*
0

ZZ

Z
Z

iVd
i

Repeat this process until no other significant variance changes are detected. 
The aim of the standardization process is to remove the impact of the variance shift, hence 

allowing the detection of the following change. With no adjustment, the biggest variance change 
would always be detected. Once all the variance changes are detected, only small variations may still 
be observed on the lessened series. The modification we propose with respect to Tsay’s (1988) 
procedure is introduced at Step 3. Indeed, we use the initial extreme value instead of the modified 

maximum as done by Tsay. In the case of an up-change , whereas in the case 
of a down-change . This means that Tsay’s procedure can detect a down-change but 

the standardization process  does not perform the right correction.  

*
0Vdλ

0Vdλ max,
*

00 VVdVd λλλ ==

min,
1*

00 VVdVd λλλ == −

*
iZ

In order to study a case with two variance changes, we first simulate a series of 10,000 data points 
with a change at each third of the series. Hence, the first change occurs at 3334=i  and the second 
one at . The three parts of the series contain centred Gaussian data with three different 
standard deviations equal to 2, 4 and 8 respectively. We take equal to 50 for all variance shift 
detections since this value seems to be enough for most of the detections.  

6667=i
d

 
Table 2. Results of the 2 detections when σ = 2, 4 and 8 respectively. 

 
 1st Detection 2nd Detection 

Max  ir̂ 3.593392207 3.145228444 

Min  ir̂ 0.43531926 0.43531926 

0Vdλ  3.593392207 3.145228444 

Detected do 3334 6667 

Observation nb: 1st change 3334 3334 

Observation nb: 2nd change 6667 6667 
 
In this multiple variance shifts example, the moving variance ratio technique accurately detects both 
variance changes at the exact dates 3334=i  and 6667=i . The two following figures show the 
different steps of the detection and standardization process.  
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Figure 1. Evolution of the residuals after each standardization when σ = 2, 4 and 8 respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2. Evolution of the residuals after each standardization when σ = 2, 4 and 8 respectively. 
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In a second example, we simulate 10,000 data points with a change at each third of the series and three 
different standard deviations of 8, 4 and 2 respectively.  
 

Table 3. Results of the 2 detections when σ = 8, 4 and 2 respectively. 
 

 1st Detection 2nd Detection 

Max  ir̂ 2.721904899 2.721904899 

Min  ir̂ 0.204068686 0.226943962 

0Vdλ  4.900310874 4.406374113 

Detected do 6667 3329 

Observation nb: 1st change 3334 3334 

Observation nb: 2nd change 6667 6667 

In this second example, the two variance shifts are down-changes. The identified 0d  corresponds to 
the exact date for the first down-change, and is situated only 5 observations before the exact second 
down-change. We can thus state that the accuracy of this technique is also shown for down-changes. 
The fact that the detection is not as perfect as in the case of up-changes may come from the presence 
of the asymmetry in volatility as stated previously.  
 

Figure 3. Evolution of the residuals after each standardization when σ = 8, 4 and 2 respectively. 
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For the last example, we simulate 10,000 observations with the first variance change at  and 
the second at . The three different standard deviations are 4, 6 and 4 respectively. In this 
example, we are in the case of two small variance changes, upward and then downward. Because of 
the small variance shift, we set  equal to 150.  

3334=i
5001=i

d
 

Table 4. Results of the 2 detections when σ = 4, 6, 4 respectively. 
 

 1st Detection 2nd Detection 

Max  ir̂ 2.166149627 1.965881614 

Min  ir̂ 0.484617473 0.484617473 

0Vdλ  2.166149627 2.06348317 

Detected do 3346 5096 

Observation nb: 1st change 3334 3334 

Observation nb: 2nd change 5001 5001 

 
Figure 4. Evolution of the residuals after each standardization when σ = 4, 6, 4 respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Our technique is accurate for this last example too. The two detected  remain quite close to the real 
changing dates. We can again notice that the detection of the down-change is less accurate. The 
adjusted series does not seem to contain any other major variance change. These three examples 

0d
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confirm that this simple moving variance ratio technique is efficient in detecting variance changes and 
the standardization process uniformly lessened the series3. This technique can now be applied for 
variance shift detections on real financial time series.  
 

3. The moving variance ratio technique applied to financial time series 
In this section we test the technique developed in the previous part on the Hong Kong stock 

market index. We decided to focus on the Hang Seng index in our empirical investigations as Hong 
Kong provides a good example of a very active medium size stock market. It is a very liquid, but also 
sometimes extremely volatile market, as for example in 1997, during the Asian financial crisis 
following the devaluation of the Thai baht. 

Step 1: ARMA model specification 
We use an ARMA(p,q) model as follows: 

qtqtttptpttt uuuu −−−−−− +++++Φ++Φ+Φ= ξθξθξθξ LL 22112211     (3) 

Selecting the order of lags p and q is the result of an arbitrage between efficiency and accuracy. The 
use of a reduced number of lags may bias the detection of serial correlations at high orders whereas on 
the contrary, significant low order correlations may be affected by insignificant correlations at higher 
orders and a loss of degrees of freedom. 

Step2: Moving Variance Ratio  
The residuals of the ARMA(p,q) process become our  series. Then, we compute the moving 

variance ratio  on these residuals as in “(1)”. The two extreme values and  can now be 

identified and   computed.  is then compared to a pre-specified 
critical value, say C. This critical value C sets a level of significance for the variance change.  If 

> C, a variance change occurs at . We set C equal to 4 for the variance change detection on 
real financial time series

iZ

ir̂ max,Vλ min,Vλ

),( 1
min,max,0

−= VVVd Max λλλ
0Vdλ

0Vdλ id
4.  

Step3: Limited adjustment 
We are now in the real financial series case and permanent variance changes are very rare. The change 
in variance does not last infinitely and its amplitude decreases gradually. This means that only a 
specified part of the series after the detected variance change has to be adjusted. We then compute a 

slightly different ratio  where the denominator, i.e. the variance of the -data′
ir̂ d 5 preceding the 

detected variance change at , remains constant.  0d
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2
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i
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     (4)

 

One should bear in mind that in the case of a constant variance, this variance ratio is equal to 1. Thus, 
this ratio converges to 1 when the variance comes back to the level preceding the detected variance 

change. Therefore,  denotes the number of consecutive variance ratios  k ′
ir̂  that are above or below 1 

respectively, in the case of an up or down-change. Hence, the adjustment is operated on the -data 
following the detected  as follows: 

k
0d

        if i<d0  
 

        if d0<i≤ d0 + k   (5) 
 
              if i > d0 + k  

⎪
⎩

⎪
⎧ iZ

⎨ ′−+′= +≤+≤ kddidi ZZ )(
000

** λ ≤
−

≤

i

iVdkdi

Z

ZZ
00

2/1

where is either  or . 
*

0Vdλ max,Vλ min,Vλ

                                                           
3 Results for all the simulations we performed are available upon request. 
4 Tsay (1988) sets this critical value at 3.5. In our case, as the computation of the moving variance ratio on a 
restricted section of the series induces larger values for the ratio we increase the value of C.   
5 We take d=50 for all the detections as specified in the previous part. 
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The detection process then starts again from Step 1. The modified series  is now used as the initial 
series on which a new ARMA model is applied. Then, the moving variance ratio detection technique is 
applied to the residuals which become the new series .  

*
iZ

iZ
First variance change detection 

We use the daily closing price of the Hang Seng index from January 1994 to April 2007 which 
accounts for 3462 observations. Our data comes from Datastream Thomson Financial. The first step 
consists in computing the daily logarithmic returns . Figure 5 depicts the evolution of the daily 
Hang Seng Index returns and Table 5 provides the basic descriptive statistics of this return series.  

iR

 
Figure 5. Hang Seng Index log-returns between 1994 and 2007. 

 

 
 

Table 5. Descriptive statistics of the raw Hang Seng Index returns. 
 

Mean (%) 0.0150 

Standard deviation (%) 1.5958 

Skewness -0.0935* 

Kurtosis 5.9552* 

Jarque-Bera 1264.1330 
(p-value=0.0000)

* denotes significance at the 5% confidence level. 
 

Our returns series shows an empirical distribution with heavy tails relative to the Gaussian 
distribution. The series also appears asymmetric. Finally, the Jarque-Bera statistic strongly rejects 
normality at the standard 5% confidence level. 

The best model6 fitting our returns series is an ARMA(1,1) model (detailed in Table 6) as follows: 
11 62097.056170.000023.0 −− +−= tii RR ξ       (6) 

Table 6. The ARMA(1,1) on the raw returns series coefficients and statistics 
 

Variable Coefficient p-value 
Constant 0.00023 0.57691 

AR(1) term -0.56170* 0.00025 
MA(1) term 0.62097* 0.00002 

* indicates significance at the conventional 5% risk level. 
We then compute the moving variance ratio  on the residuals of the ARMA(1,1) model specified 

by “(1)”. We thus obtain our series of  , on which we look for the two extreme values and 

, and finally compute = Max ( , ). If is significant, a change in variance is 

ir̂

ir̂ max,Vλ

min,Vλ 0Vdλ max,Vλ
1
min,

−
Vλ 0Vdλ

                                                           
6 We based our choice on the AIC and Schwarz criteria. The detailed results are available upon request. 
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detected and an adjustment has to be made. This first variance change  is detected at 0d 945=i  
which corresponds to August 15, 1997. This date corresponds to the beginning of a high volatility 
period on the Hong Kong market due to the spillover effects of the financial crisis from Thailand.   

Finally, we need to determine  through the computation of the following variance ratio as in 
“(4)”.  represents the number of consecutive variance ratios 

k
k ′

ir̂  above 1. For this first variance 
change detection  is equal to 980. Hence, the adjustment is operated on the 980 data following the 
detected  at time as follows: 

k
0d 945=i

        if i<945 
        if 945≤i≤945+980  (7) 
        if i>945+980 

The upper part of Figure 6 shows the series  and the region on which the adjustment will be 
operated while the middle part of Figure 6 shows the adjusted series . One can notice that after the 
adjustment, the high-volatility period has mainly been removed from the series.  

iZ
*
iZ

 
Figure 6. Hang Seng index: residuals after the first and second standardizations 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Second variance change detection 

The best model fitting the new, adjusted returns series is now an ARMA(2,2) process (detailed in 
Table 7) written as follows: 

2121 6640.01862.06337.01576.00000274.0 −−−− +−−+= ttiii RRR ξξ   (8) 
Table 7. ARMA(2,2) coefficients and statistics, second change detection 

Variable Coefficient p-value 
Constant 2.7355E-05 0.92097 
AR(1) 0.15756* 0.04750 
AR(2) -0.63366* 4.9228E-18 
MA(1) -0.18620* 0.01649 
MA(2) 0.66404* 2.8185E-20 

* indicates significance at the conventional 5% risk level. 
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The moving variance ratio is now applied on the residuals of this ARMA(2,2) model. We obtain a 
series of , and then isolate the two extreme values and  to compute = Max 

( , ). As soon as is significant, a change in variance is detected and an adjustment has 

to be made. This second change  is detected at the date 

ir̂ max,Vλ min,Vλ 0Vdλ

max,Vλ
1
min,

−
Vλ 0Vdλ

0d 1975=i  which corresponds to July 27, 
2001. This date historically coincides with the beginning of a highly volatile period for emerging 
markets following the crash of the Internet bubble and the financial crisis in Argentina.  

The adjustment has to be made on 148 data points. The middle part of Figure 6 depicts the 
evolution of the time series residuals before the second standardization with the first rectangle 
indicating the previous adjustment and the second rectangle the period on which the second 
adjustment will be operated. The lower part of Figure 6 shows the new residual series  after the 
second adjustment, while Table 8 summarizes the descriptive statistics of the two obtained series 
following the first and the second adjustments. 

*
iZ

 
Table 8: Comparative descriptive statistics of the residual series after the first and second adjustments 

 
 After the first adjustment After the second adjustment 

Mean (%) 0.0000 0.0000 

Standard deviation (%) 1.1078 1.0521 

Skewness -0.1917 * -0.0954* 

Kurtosis 6.0972* 5.6083* 

Jarque-Bera 1404.149 
(p-value=0.0000) 

985.5049 
(p-value=0.0000) 

* denotes significance at the 5% confidence level. 
According to these descriptive statistics, the newly adjusted series  exhibits less excess kurtosis 

than the one obtained after the first adjustment. This means that the moving variance ratio technique 
manages to treat the different extreme values.  

*
iZ

Restarting the stepwise algorithm, an ARMA(1,1) seems now the most accurate model and is 
written as follows: 

11 63588.064134.000000694.0 −− −+= tii RR ξ      (9) 
Table 9.  ARMA(1,1) coefficients and statistics, third change detection 

 
Variable Coefficient p-value. 
Constant 6.942E-06 0.91502 
AR(1) 0.64134* 0.00161 
MA(1) -0.63588* 0.00192 

* indicates significance at the conventional 5% risk level. 
 

Then, the moving variance ratio is computed on the residual series from the preceding ARMA(1,1) 
model. The two extreme values and   are isolated so that = Max ( , ) can 

be computed. Here 
0

is equal to 3.8954 which is below the critical value set equal to 4. Thus, the 
series does not contain any new variance change. 

max,Vλ min,Vλ 0Vdλ max,Vλ
1
min,

−
Vλ

Vdλ

Finally, we compare our results with those obtained by applying the Bai and Perron (1998, 2003) 
test that allows detecting the number and location of the structural breaks in the time paths of a time 
series. We use the squared residuals of the ARMA estimation on the returns as a proxy for the 
unconditional variance. The breakpoint selection procedure is based on the Bayesian Information 
Criteria (BIC) and the maximum number of breaks is initially set to be 3. Table 10 summarizes the 
results of the BP test. They are consistent with what was previously reported with our variance shift 
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detection method, i.e. two break points7. More precisely, the first variance change point is exactly the 
same one, i.e. observation number 945 which corresponds to August 15, 1997. The second break point 
is not exactly the same, i.e. 1675 versus 1975 for our method. However, the variance change point 
identified by our method is within the 95% confidence interval of the Bai-Perron test. The difference 
in the exact location of this second break might be explained by the difference in the length of the 
segments on which the computations are done in the BP test and the lengths on which we apply the 
adjustments. Consequently, the BP test provides rather similar results when compared to our method. 
However, our approach is easier to implement; moreover, it also provides an adjustment procedure 
after each variance shift detection8.  

 
Table 10. Results of the Bai-Perron test for multiple structural break points 

 

Number of breakpoints Estimated break date 95% confidence interval 
(observation number) 

945 [488 -  954] 2 
1675 [1675 -  2047] 

 
 

4. Conclusion 
The moving variance ratio technique has proven its efficiency in detecting variance changes and 

removing them from the series. The detection technique developed in this paper is different with 
respect to the one proposed by Tsay (1988) in two ways. First, through the introduction of  which 
refers to the number of observations used to compute the two variances of the ratio. The first 
advantage of this innovation is the reduction in the number of computations needed. Moreover, having 
a numerator and denominator computed on the same amount of observations d gives to each ratio the 
same weight and significance. The second development that we propose concerns the area on which 
the adjustment is made. Tsay (1988) standardizes all the observations following the detected variance 
change. We actually chose to introduce and define  as the number of observations on which the 
adjustment is operated. A variance change never lasts indefinitely, which is why we decide to adjust 
only the period experiencing a high volatility. We determine this period trough the computation of a 
moving variance ratio with a fixed denominator. This ratio converges to 1 when the volatility comes 
back to the level of the period preceding the detected level shift. The value  refers to the number of 
consecutive ratios, computed after the detected variance change, that are above or below 1 in the case 
of an up or down-change, respectively.  

d

k

k

Two significant variance changes have been identified within the series of the Hang Seng daily 
log-returns stretching from 1994 to 2007. The first one is detected on August 15, 1997, which 
coincides with the beginning of the period of high volatility in Hong Kong due to the financial turmoil 
experienced by Thailand after the Thai Baht devaluation. This period of high volatility lasts 980 
trading days, i.e. almost four years. The second variance change is detected on July 27, 2001 which is 
the beginning of a period of high volatility on emerging markets following the crash of the dot.com 
bubble, along with the first signs of the financial crisis in Argentina and exacerbated by the September 
11, 2001 attacks.  

Potential developments could consist in using an adjustment factor in the standardization that 
overweights the residuals close to the detected change and optimizing the level of the critical value C.  

There are multiple potential ways of using this moving variance ratio technique. Indeed,  can be 
set at different levels depending of the type of anomalies that one is willing to detect. If  is set at a 
very high level, large and permanent variance changes will be detected. On the contrary, when  is 

d
d

d
                                                           
7 We also applied a CUSUM of squares test that points out the presence of two break points too.  
8 We also performed the moving variance procedure and the Bai and Perron test on 3 other Asian index returns, 
namely the Kospi Index, the Singapore Straits Times Index and the Nikkei 225 Index over the same time period. 
For space reasons, the detailed results are not provided here. Two conclusions emerge: 1/ the two approaches 
provide very similar results (the detected breaks are either exactly the same or within the confidence interval of 
the Bai and Perron test); 2/ the variance changes of all these Asian return series arise during the. Asian turmoil of 
1997 and the dot.com bubble bursting coupled with the beginning the crisis in Argentina. 
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set at around 50, permanent and transient variance changes can be detected. Moreover, setting the 
value of  below 10 could be a way to capture outliers. Indeed, the presence of an abnormally high 
value will produce a huge increase in the variance ratio. 

d
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