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Abstract 
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diversify the risk in a portfolio that consist of assets in these countries, especially in turbulence periods.
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1. INTRODUCTION 

 

Managing and monitoring major financial assets are routine for many individuals and 

organizations. Therefore careful analysis, specification, estimation and forecasting of the 

dynamics of returns of financial assets, construction and evaluation of portfolios are essential 

skills in the toolkit of any financial planner and analyst (Caporini and McAleer, 2010). 

Practitioners and academicians generally use Gaussian processes because of their tractable 

properties for computation. However, it is well known that asset returns are fat-tailed. 

Gaussian assumption is also the key point to understand the modern portfolio theory. 

Since the introduction of the mathematical theory of portfolio selection (Markowitz, 

1952) and of the Capital Asset Pricing Model (CAPM – Sharpe, 1964; Lintner, 1965; 

Mossin, 1966), the issue of dependence has always been of fundamental importance to 

financial economics. Within this context, the knowledge of the behavior of correlations and 

covariances between asset returns is an essential part in asset pricing, portfolio selection and 

risk management (Baur, 2006). 

In the context of international diversification, there is the need for minimizing the risk 

of specific assets through optimal allocation of resources. Therefore, it is necessary to 

understand the multivariate relationship between different markets. Thus we need a statistical 

model able to measure the temporal dependence between shocks of different countries. 

An inappropriate model for dependence can lead to suboptimal portfolios and 

inaccurate assessments of risk exposures. Traditionally, correlation is used to describe 

dependence between random variables, but recent studies have ascertained the superiority of 

copulas to model dependence, as they offer much more flexibility than the correlation 

approach, because a copula function can deal with non-linearity, asymmetry, serial 

dependence and also the well-known heavy-tails of financial assets marginal and joint 

probability distribution. Thus, this loss function is a very appropriate choice to a researcher is 

able to model extreme events, as the issues inherent to the financial risk management   

(Embrechts et al., 2003). 

These two difficulties (Gaussian assumption and joint distribution modelling) can be 

treated as a problem of Copulas. A copula is a function that links univariate marginals to their 

multivariate distribution. Since it is always possible to map any vector of random variables 

into a vector with uniform margins, we are able to split the margins of that vector and a 

digest of the dependence, which is the copula. The concept of copula was introduced by Sklar 

(1959) and studied by many authors such as Deheuvels (1979), Genest and MacKay (1986). 

An important reason to consider other families of copulas in the place of the Gaussian copula 

is the failure of the correlation approach to capture dependence between extreme events, as 

shown by Longin and Solnik (2001), Bae et al. (2003) and Hartmann et al. (2004). 

 Extreme value copulas arise as the possible limits of copulas of component wise 

maxima of independent, identically distributed samples. The use of bivariate extreme-value 

copulas is greatly facilitated by their representation in terms of the Pickands dependence 

functions (Genest and Segers, 2009).  However, up to now no consensus has been reached on 

which copula family should be used in specific applications. For this some papers (Genest 

and Remillard, 2008; Genest, Remillard and Beaudoin, 2009) has emerged to explain how to 

test the accuracy of a specific copula.  

Thus, this paper aims to determine which family of extreme value copulas is best 

suited to the relationship between bivariate shocks of U.S. and Latin American financial 

markets (Brazil, Argentina and Mexico) considering the period after the recent financial 

crisis of 2007/2008. These Latin American emerging markets rank among the most mature 

markets within the universe of emerging countries and they actually attract a particular 

attention from global investors thanks to their great market openness. This question is 
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investigated testing the fitting performance of copulas for daily prices of S&P500, Ibovespa, 

Merval and IPC from January, 3, 2009 to December, 31, 2010, totaling 483 observations.  

First the residuals were filtered through Dynamic Conditional Correlation Generalized 

Auto Regressive Conditional Heteroscedasticity (GARCH-DCC), in order to eliminate the 

serial dependence and capture the dynamic dependence between markets. After we estimated 

copula families of Gumbel, Galambos, Husler Reiss and Student’s t extreme-value (TEV), in 

order to identify, through a selection criterion, which presents the best fit for the sample. A 

rank-based version of the familiar Cramér–von Mises statistic is employed to determine 

which family of copula has the best fit to the data studied. This choice was made in the 

sample because in this paper the financial/economic objective is to model the dependence of 

the U.S. and Latin markets, in order to verify the risk diversification. In other type of study, 

as the assessment of the efficiency of the Value at Risk measure, as example, one can extend 

this test of fit to the out of sample without problems. 

The rest of the paper is structured as follows: Section 2 outlines the theoretical 

background concerning the modelling of Copulas. Section 3 describes the method of the 

study. Section 4 presents and discusses the results. Finally, section 5 gives the final 

considerations of the research. 

 

2. COPULAS 

 

This section is divided into two parts: definitions and concepts, introducing the 

fundamental properties of copulas; and families of extreme value copulas, showing the main 

classes of copulas used in finance to model financial risk. 

 

2.1 Definitions and concepts 

 

Dependence between random variables can be modeled by copulas. A copula returns 

the joint probability of events as a function of the marginal probabilities of each event. This 

makes copulas attractive, as the univariate marginal behavior of random variables can be 

modelled separately from their dependence (Kovadinovic and Yan, 2010). 

The concept of copula was introduced by (Sklar 1959). However, only recently its 

applications has become clear. A detailed treatment of copulas as well as of their relationship 

to concepts of dependence is given by Joe (1997) and Nelsen (2006). A review of 

applications of copulas to finance can be found in Embrechts et al. (2003) and in Cherubini et 

al. (2004). 

For ease of notation we restrict our attention to the bivariate case. The extensions to 

the n-dimentional case are straightforward. A function    [   ]  [   ] is a copula if, for 

       and               (      ) (      )    [   ]
    it fulfills the following 

properties: 

 (   )   (   )        (   )   (   )                                                            (1) 

 (      )   (      )   (      )   (      )                                                    (2) 

Property (1) means uniformity of the margins, while (2), the n-increasing property 

means that  (               )    for (X,Y) with distribution function C. 

In the seminal paper of Sklar (1959), was demonstrated that a Copula is linked with a 

distribution function and its marginal distributions. This important theorem states that: 

(i) Let C be a copula and    and    univariate distribution functions. Then (3) defines 

a distribution function F with marginals    and   . 

 (   )   (  ( )   ( )) (   )    
                                                                        (3)  
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(ii) For a two-dimensional distribution function F with marginals    and   , there 

exists a copula C satisfying (3). This is unique if    and    are continuous and then, for 

every (   )   [   ] : 

  (   )   (  
  ( )   

  ( ))                                                                                   (4) 

In (4),   
        

   denote the generalized left continuous inverses of    and   . 

However, as Frees and Valdez (1997) note, it is not always obvious to identify the copula. 

Indeed, for many financial applications, the problem is not to use a given multivariate 

distribution but consists in finding a convenient distribution to describe some stylized facts, 

for example the relationships between different asset returns. 

 Melo and Mendes (2009) emphasize that in order to measure upper tail dependence 

one may use the coefficient    defined in (5). 

             (  )     
    

  (    
  (   )     

  (   ))                       (5) 

 Provided the limit      [   ] exists, and where   
        

   denote the generalized 

left continuous inverses of    and   . The lower tail dependence is defined in a similar way. 

If      (    ), the two variables x and y are said to be asymptotically in the upper 

(lower) tail. 

  

2.2 Extreme Value Copulas 

 

The most frequently used copulas are Elliptical and Archimedean (Yan and 

Kojadinovic, 2010). However, it is often reasonable to assume that the dependence structure 

of a bivariate continuous distribution belongs to the class of extreme-value copulas, because 

it is more efficient to model financial risk with these copulas, due to the fact that it is 

precisely in the tails of the returns distribution, that lies the biggest challenge of diversifying 

a portfolio (Genest et al., 2011).  

C is an extreme value copula when there exists a function A: [0,1] → [0.5,1] such that 

for all (u,v)   [   ] , there is a relation as expressed in (6). 

 (   )     [   ( )    (  )].                                                                                      (6) 

It was shown by Pickands (1981) that C is a copula if and only if A is convex and     (    
 )   ( )   . By reference to this work, the function A is often referred to as the Pickands 

dependence function (Genest and Segers, 2009). 

Among the extreme value copulas, which are characterized by capture the tail 

dependence, we highlight the families: Gumbel, Galambos, Husler Reiss and TEV.  

The Gumbel family has been introduced by Gumbel (1960). Since it has been 

discussed in Hougaard (1986), it is also known as the Gumbel-Hougaard family. Another 

important reference is Hutchinson and Lai (1990). The Gumbel copula is defined as (7). 

 (   )     { [(    )  (    ) ]   }                                                            (7) 

In (7), the range for   is[    ). The coefficient of tail dependence is given by 

      
   . 

Another family of extreme value copulas is the Galambos, which was proposed by 

Galambos (1987). It is represented by formulation (8). 

  (   )       ([(    )  (    )  ]    )                                                     (8) 

In (8), the range for   is [0,  ). The coefficient of tail dependence is given by    
      . 

The Husler Reiss, an extreme value family of copulas, was developed by Hüsler and 

Reiss (1989). It is described in (9). 

 (   )     (  ̂ [
 

 
 
 

 
    (

 

 
)]   ̂ [

 

 
 
 

 
    (

 

 
)])                               (9) 
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In formulation (9),  ̂       ,  ̂       ,   is the cumulative density function of 

a standard normal. The range of   is [0,  ). The coefficient of tail dependence is given by 

         (   ). 
 The Student’s t family is originally as elliptical class of copula. However, as can be 

found in Demarta and Mcneil (2005), this copula has an adaptation to extreme values. The 

TEV copula with correlation ρ and υ degrees of freedom is defined as in (10). 

    (   )     (   (  )    
   ( )

   (  )
)                                                                     (10) 

In (10),      is the Pickands dependence function, based in the bivariate Student’s t 

probability function with correlation ρ and υ degrees of freedom. 

 

3. EMPIRICAL METHOD AND DATA 

 

In order to verify which family of copulas is best suited to the bivariate relationship 

between residuals (shocks) of United States, Brazil, Argentina and Mexico, we collected data 

of the daily prices of S&P500, Ibovespa, Merval and IPC, respectively, from January, 3, 2009 

to December, 31, 2010, totaling 483 observations. These indices were chosen because they 

are commonly used in academic papers as proxies for the financial markets in these 

countries. All are compound by the stocks that are more representative in terms of liquidity 

and value. 

Were initially employ the ADF test (Dickey Fuller Aumented) in both sets of prices as 

in their differences of logarithms (the returns), to eliminate problems of non-stationarity. The 

ADF test, proposed by Dickey and Fuller (1981) is represented by (11). 

          ∑           
 
   .                                                                            (11) 

In the formulation (11),     is the price change at time t,   and   are constant, and    
is a white noise series. If the null hypothesis cannot be rejected, the price series {P} contains 

a unit root, with non-stationarity. The equations are estimated by Ordinary Least Squares and 

the parameter values are compared to critical values from tables generated by Dickey and 

Fuller (1981), based on Monte Carlo simulations. 

Since there is serial dependence and heteroscedasticity in the series, the results may 

contain bias of estimation. Thus, was employed the GARCH-DCC model, proposed by Engle 

and Sheppard (2001) The DCC model is a two-step algorithm to estimate the parameters. In 

the first stage, the conditional variance is estimated by means of univariate GARCH model, 

respectively, for each asset. In the second step, the parameters for the conditional correlation 

are estimated. Finally, the DCC model includes conditions that make the variance matrix 

positive definite at all points in time and the variance between assets’ volatility a stationary 

process. The DCC model is represented by the formulation (12). 

         .                                                                                                             (12) 

In formulation (12),        (     
    

      
    

)      (     
    

      
    

);    

    (     
   
      

   
), where       is defined similarly any univariate GARCH model;  

Subsequently, by Q statistic of Ljung and Box (1978), represented for (13), which 

tests the null hypothesis that the data are random against the alternative of non-randomness of 

these, we sought to identify the presence of correlation serial on the residuals of the indices. 

   (   )∑
 ̂ 
 

   

 
   .                                                                                            (13) 

In (13), n is the size of sample;  ̂ 
  is the autocorrelation of sample in lag k; h is the 

number of lags being tested; The Ljung-Box Q statistics follows a chi-squared (  ) 
distribution. 

Subsequent to this initial empirical analysis, using the residuals that were obtained through 

the GARCH-DCC applied to the series, we estimated the families of copulas introduced at 
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section 2. For this the data was standardized into pseudo-observations    (         ) 

through the ranks as         (   ). The pseudo-observations are not affected by the 

marginal in their transformation because the ranks are calculated based on the empirical 

observed data.  

The next step was, to estimate the copula’s parameters, it was employed the procedure 

of inversion of the copula based Kendall’s Tau (τ), that serves to measure the monotonic 

dependence, which is calculated as in (14). 

 (   )   ∫ ∫  (   )  (   )    
 

 

 

 
                                                                    (14) 

To determine which copula model best fits the residuals of the markets studied, we 

applied a rank-based version of the familiar Cramér–von Mises statistic, discussed in Genest, 

Rémillard and Beaudoin (2009) and extended in Genest et. al. (2011), which make it possible 

to check the validity of the dependence structure separately of the margins. These authors 

emphasize that it is a blanket test, i.e., a procedure whose implementation requires neither an 

arbitrary categorization of the data, nor any strategic choice of smoothing method, whether it 

be kernel- or wavelet-based, or whatever. The goodness-of-fit test employed is defined in 

(15), tests the null hypothesis that data is fitted by    , a copula with vector of parameters  . 

   ∫   ( )
 

[   ] 
   ( )                                                                                      (15) 

In (15),   ( )  
 

 
∑  (              )
 
    is known as the empirical copula;    

(         ) are the pseudo-observations;   (     )  [   ]
 ;    √ (      )  is the 

empirical process that assess the distance between the empirical copula and the estimation 

   ; n is the number of observations. In practice, the limiting distributions of    and depend 

on the family of copulas under the composite null hypothesis, and on the unknown parameter 

value   in particular. This procedure was chosen because it can deal with non-linearity, 

asymmetry, serial dependence and also the well-known heavy-tails of financial assets. 

Further, it can verify if the copula family really fit the data, and not just indicate what family 

is a good model, as the usual AIC, BIC and Log-Likelihood. The pseudo-observations are not 

affected by the marginal in their transformation because the ranks are calculated based on the 

empirical observed data.  

  

4. RESULTS 

 

Initially, we performed the ADF test of unit root in both series in level and first 

difference of logarithm (daily returns). Results are shown in Table 1. 

 

Table 1. Unit Root test of USA, Brazil, Mexico and Argentina. 

Variable ADF test p-value 

S&P500 -0.6020 0.8679 

Ibovespa -1.6507 0.4565 

Merval 0.6752 0.9917 

IPC -0.3236 0.9191 

Δln(S&P500) -15.0330 0.0000 

Δln(Ibovespa) -15.7937 0.0000 

Δln(Merval) -15.8186 0.0000 

Δln(IPC) -14.8784 0.0000 

*Bold values are significant at the 1% level 
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As the presence of a unit root in all series was confirmed, we calculated the daily 

returns by the difference of logarithms of prices. Table 2 displays the descriptive statistics of 

these returns, whereas Figure 1 shows the temporal evolution of these series. 

The results in Table 2 confirm the fact that Brazil, Argentina and Mexico being 

emerging countries, should have a higher standard deviation, representing greater risk and 

therefore requiring higher returns, as it is verified by higher values for mean and median. The 

U.S. market, by contrast had lower mean and median and lower standard deviation of returns, 

representing a more stabilized economy. It is also noticed that all sets of returns are 

leptokurtic, a fact quite common, being widely recognized by financial professionals. 

 

 Table 2. Descriptive statistics of daily returns of Ibovespa and S&P500. 

Statistic Δln(USA) Δln(Brazil) Δln(Argentina) Δln(Mexico) 

Mean        0.0007 0.0011 0.0025 0.0011 

Median           0.0012   0.0014  0.0026 0.0020 

Minimum          -0.0543   -0.0540  -0.0770 -0.0563 

Maximum                 0.0684   0.0638  0.0712 0.0618 

Standard deviation         0.0151   0.0171  0.0201  0.0142 

Skewness    -0.0734   0.0432  -0.1404 0.0428 

Kurtosis             5.3436 4.6304 4.7111 6.0122 

 

The results in Table 2 confirm the fact that Brazil being an emerging country, should 

has a higher standard deviation, representing greater risk and therefore requiring higher 

returns, as is verified by higher values for mean and median. The U.S. market, by contrast 

had lower mean and median and lower standard deviation of returns, representing a more 

stabilized economy. It is also noticed that both sets of returns are leptokurtic and negatively 

asymmetrical, a fact quite common, being widely recognized by financial professionals. 

Figure 1 endorses these results. It confirms visually the greater dispersion of the daily 

returns of the Latin American markets compared to the U.S. It is noteworthy that there is a 

volatility cluster at begin of the observations, extending for about 100 trading days. It was the 

vestiges of the American financial crisis. 

Subsequently, it was estimated a GARCH-DCC model to obtain the residuals and 

filter their serial dependence. The information about this model will be omitted due to lack of 

space. In addition, Table 3 presents the statistics Q of the residues obtained from the 

estimated GARCH-DCC model. 

The results in Table 3 suggest that the estimated residuals from the GARCH-DCC 

model do not exhibit significant serial correlation. Thus, such residuals may be used for 

estimation of families of copulas proposed in this study.  

After this initial empirical analysis of the indexes presented in this paper, the 

parameters of the copulas Gumbel, Galambos, Husler-Reiss and TEV were estimated, 

through inversion of Kendall’s Tau. Then, there was statistically verified the goodness of fit 

of the estimated copulas by the    test exposed in the method of this study. The results of the 

estimated parameters, as well as values and significance of the    tests are shown in Table 4.  

The results presented in Table 4 support the conclusion that, after the American 

financial crisis, the null hypothesis was rejected, at the 5% level of significance, of fit the 

bivariate relationships the copula Husler-Reiss for the relationship of U.S and Mexican 

markets. Nevertheless, Mexico had the largest value for the measure of monotonic 

dependence Kendall’s Tau, obtaining the value of 0.297. 

Regarding the goodness of fit of the families of copulas estimated, it had the lowest 

value for the     statistical, and consequently the least distance between the hypothetical and 

empirical copula, the Gumbel copula, for the relationship of U.S. market with Brazil, Husler-
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Reiss copula with the Argentine market and, TEV copula for the Mexican market. In the case 

of the Argentine and Mexican markets, the Gumbel copula obtained very similar fit to that of 

the copulas with lower    test value. This result implies that after the period of turbulence, 

i.e. the beginning of recovery of these financial markets, the modeling of the joint probability 

distribution of its residuals showed some similarities, corroborating with the study of Righi 

and Ceretta (2011). It is noteworthy that although it has the lowest value for the monotonic 

dependence measures, the Argentine market had fitted all the copulas estimated to the 

relationship with the U.S. market. 

 
Figure 1. Time series of daily returns of S&P500 (USA), Ibovespa (Brazil), Merval 

(Argentina) and IPC (Mexico). 

 

Table 3. Ljung-Box Q statistic for residuals of daily returns of S&P500 (USA), Ibovespa 

(Brazil), Merval (Argentina) and IPC (Mexico) after crisis period estimated by GARCH-

DCC. 
 USA/Brazil Brazil USA/Argentina Argentina USA/Mexico Mexico 

Lag Q-test sig. Q-test sig. Q-test sig. Q-test sig. Q-test sig. Q-test sig. 

1 0.038  0.845 0.260 0.610 0.686 0.407 0.932 0.334 0.046 0.830 0.830 0.362 

2 0.885  0.643 0.288 0.866 0.710 0.701 1.272 0.529 0.215 0.898 1.139 0.566 

3 1.871 0.600 0.336 0.953 0.993 0.803 1.899 0.594 0.358 0.949 1.728 0.631 

4 2.320 0.677 0.337 0.987 1.188 0.880 1.946 0.746 0.435 0.980 1.762 0.779 

5 2.491 0.778 0.630 0.987 1.279 0.937 1.961 0.855 0.444 0.994 1.787 0.878 

6 2.518 0.866 0.697 0.995 1.375 0.967 2.178 0.903 0.951 0.987 1.994 0.920 

7 2.568 0.922 0.914 0.996 1.435 0.984 2.178 0.949 3.384 0.847 1.997 0.960 

8 3.186 0.922 0.992 0.998 2.047 0.980 2.918 0.939 4.773 0.782 2.666 0.954 

9 3.246 0.954 1.930 0.993 2.086 0.990 4.130 0.903 5.023 0.832 3.862 0.920 

10 3.725 0.959 2.041 0.996 2.418 0.992 4.328 0.931 6.340 0.786 4.036 0.946 

* None of the values are significant at 5% level. 
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Table 4. Estimated parameters of the copulas, values and significance of the    tests in the 

bivariate relationships of USA, Brazil, Argentina and Mexico. 
 USA-Brazil USA-Argentina USA-Mexico 

                           Tau=0.197 Tau=0.035 Tau=0.297 

Copula Parameter    test Sig. Parameter    test Sig. Parameter    test Sig. 

Gumbel 1.2450 0.0064* 0.9356 1.0361 0.0350 0.5459 1.4234 0.0649 0.1094 

Galambos 0.5007 0.0113 0.8257 0.2249 0.0341 0.5509 0.6938 0.0757 0.0554 

Husler-Reiss 0.8662 0.0148 0.7388 0.5000 0.0339 0.5439 1.1045 0.0850 0.0454 

TEV 0.5021 0.0071 0.9256 0.0203 0.0602 0.2692 0.6783 0.0648 0.1004 

Bold values are significant at 5% level. * indicates the better fit. 

 

This result further highlights the importance of risk management in terms of 

international diversification. This is because such a higher concentration of probability in the 

tails, in particular for lower values indicate empirically that shocks of the Latin and U.S. 

markets have dependence above the normally expected in the extreme values of their 

distributions. This increased joint probability in the tails shows that it is difficult to minimize 

the risk of a portfolio based on asset allocation in these countries, especially in times of 

negative innovations, which is exactly when active managers need to protect their 

investments. 

 

5. CONCLUSION 

 

Using data of the daily prices from the proxies of Brazilian, Argentine, Mexican and 

American markets, we calculated their returns and residuals. We latter estimated a GARCH-

DCC model in order to filter the serial dependence of the data. With the residuals, by 

reversing the measure of association, Kendall’s Tau, we estimated the following copulas: 

Gumbel, Galambos, Husler-Reiss and TEV. Based on this estimation it was found, initially, a 

high degree of association between shocks in both countries, as indicated by scatter plots and 

significant linear correlation. 

Nevertheless, the main objective of this paper was verify which of the estimated 

copulas had the best fit to joint distribution of residuals of both markets. To that end, we used 

the rank-based version of the familiar Cramér–von Mises statistic. The Gumbel, for the 

relationship of U.S. market with Brazil, Husler-Reiss with the Argentine market, and TEV 

for the Mexican market. In the case of the Argentine and Mexican markets, the Gumbel 

copula obtained very similar fit to that of the copulas with lower    test value. This result can 

be explained by the fact that not only returns, but also residuals of financial assets possess fat 

tails, which are best represented by probability distributions that have more concentration in 

the extreme values, compared with others probability functions. 

This result allows us to conclude that, such joint dependence of the residuals, 

especially in the tails of the distribution, make important to properly diversify the risk in a 

portfolio that consist of assets in these countries. This situation is aggravated by the fact that 

it is precisely against extreme shocks such as those raised by their tails (especially the left 

side) of the probability distribution that active managers and administrators need to worry in 

a daily basis. 

Finally, it is suggested for future studies to test the goodness of fit of extreme value 

copulas in residuals of other emergent countries, as well calculate Value at Risk (VaR) of 

portfolios composed by assets of these markets with their joint distribution function 

represented by a copula. 
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