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Abstract 

We show that a two-harmonic log-periodic formula fits the high-frequency data from the Dow Jones Industrial 
Average index, which encompass the recent episode known as the “flash crash” of May 6, 2010.
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1. Introduction 

 

The log-periodicity hypothesis proposes that financial crashes, like material rupture, can be 

governed by log-periodic formulas (Sornette and Vanneste 1992, Sornette and Johansen 

2001, Sornette and Zhou 2002, Sornette 2003). One-harmonic and two-harmonic log-

periodic equations have been employed to fit daily data (Sornette and Zhou 2002), and a 

three-harmonic formula has been used to fit anti-bubbles (bear markets) in the Nikkei (from 

1990 to 1998) and future gold prices (from 1980 to 1998) (Johansen and Sornette 1999). 

The three-harmonic formula has also been shown by us to fit intraday data for both bubble 

and anti-bubble episodes (Matsushita et al. 2006). There are other works using intraday 

data (Cajueiro et al. 2009), and Cajueiro et al. (2009) also offer a literature review. 

 One explanation of the physics underlying the log-periodic formulas posits that 

cooperative imitation between traders in a bull market is responsible for log-periodicity to 

emerge because crashes could possibly result from the buildup of correlations. Self-

reinforcing imitation in a bubble episode builds up strains that push the market to a critical 

point, from which sooner or later many traders will place the same order (that is, “sell”) at 

the same time, thereby provoking a crash (Sornette 2003). It is imitation that makes the 

system periodic on the eve of a crash, and in that sense crashes are outliers with properties 

that are statistically distinct from the rest of the population. 

 Here, we show that a two-harmonic log-periodic formula fits well the data sampled 

at a one-minute frequency from the Dow Jones Industrial Average (DJIA) index ranging 

from September 1, 2009 to May 31, 2010. The data purposely encompass the recent 

episode known as the “flash crash” of May 6, 2010. On this day, the DJIA suffered its 

largest intraday decline, that is, 998.5 points. Most of the losses occurred between 2:40 pm 

and 3:00 pm, with a peak at 2:45 pm (Figure 1). The stocks of Accenture, for example, 

briefly traded for one cent. The crash, however, was followed by an almost immediate 

rebound. 

 What triggered the crash remains unknown, but some observers point to possible 

causes like computer-automated trades and error by human traders. However, if stock 

markets are viewed as complex systems, there is no need for a trigger to explain a crash 

(see Bak and Paczuski 1995 for the general case, and Mazzeu et al. 2011 for the flash 

crash). In particular, under the log-periodic hypothesis, after the critical time a crash may 

suddenly occur without any early warning signs. An initial rumor that the trigger was a 

trader who had typed a sell order for 16 billion shares of Procter & Gamble instead of 16 

million was later dismissed by regulators. On October 1
st
, 2010 the Securities and 

Exchange Commission issued a report blaming a sloppily executed sell order of one 

mutual-fund group (Waddel & Reed), which started to sell $4.1 billion of “E-Mini” futures 

contracts through robot trading, taking account only of volume, not time or price. Some 

analysts blame an intermarket sweep order, anxiety over Greece‟s bailout package, the 

British election‟s outcome, and simply two previous days‟ declines in the index. Even if not 

the main cause, robot trading through electronic platforms (such as Direct Edge and 

BATS), which executes trades in milliseconds, certainly played a role in magnifying the 

crash. Also, thanks to increasing high-frequency trading, correlations previously only seen 

across hours or days in trading time-series are now possibly showing up in timescales of 

seconds or minutes (Smith 2010). The buildup of correlations brought by high-frequency 

trading may thus explain the log-periodic nature of the flash crash. 
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2. Results 

 

As observed, we collected data from the DJIA index sampled at a one-minute frequency 

from September 1, 2009 to May 31, 2010, totaling 65,534 observations. In line with the 

previous literature (Sornette and Johansen 2001, Sornette and Zhou 2002, Johansen and 

Sornette 1999) we considered in the analysis the price index itself rather than the returns. 

Recent developments of the log-periodic power law model consider returns (Lin et al. 

2009). Indeed, in Lin et al. (2009) stochastic conditional expectations of returns describe 

continuous updates of the investors‟ beliefs and sentiments. 

 Let ( )Z t  be the time series of the DJIA index, where 1, ,65,534t  minutes. 

Log-periodic cycles with a smooth trend component are described by a sum of log-periodic 

harmonics, that is, 

 

 ln ( ) cos( ln( ) )j

j j jZ A B C j ,                                                   (1) 

 

where 30,000t  is a reparameterized starting time on the onset of the high-frequency 

bubble. Because the sample is large (1 65,534t ), we reparameterize it and divide t  by 

30,000 in order to stabilize the estimation numerical method. (Taking 60,000 instead 

rendered the estimation unstable.) Term A B  is the trend across time, and A , B , and 

 give its shape. Parameters j , jC , and j  are, respectively, the angular log-frequency, 

amplitude, and phase of the j
th

 harmonic. We set ( ) 30,000 0ct t , where 
ct  is the 

critical time. Unlike in our previous work (Matsushita et al. 2006), here j , j , and j  

need not be equal, and 2j  allows more flexibility for the adjustment. 

 From the starting date used for the fitting procedure 
start 1t =  (3:09 pm of September 

18, 2009), the estimated critical time 3,552ct  corresponds to the lower price observed at 

9:32 am on October 2, 2009. (It is worth remarking that, on this day, there was the 

announcement of the US employment indicators.) The gaps between the trading days were 

ignored. From 24,335t  onwards, the series closely followed the log-periodic path given 

by the adjusted model. This data point corresponds to 11:17 am of December 18, 2009. 

Figure 2 shows that the two-harmonic fits well the natural logs of the DJIA index. 

 Table 1 shows the results for the parameters adjusted by nonlinear regression 

(performed using SAS 9.2). The mean square error of the fit in Figure 2 is 0.000124. For 

comparison, the case where 1j  rendered a mean square error of 0.000255, which is 

almost two times greater than the mean square error for 2j . That the two-harmonic log-

periodic power law model (LPPL2) fits the data better than that of one harmonic (LPPL1) 

can be further justified using the information criterion of Akaike (AIC) and the Schwarz 

Bayesian information criterion (SBIC). Because we have a large sample ( 61,983n ) the 

cost of increasing the number of parameters is outweighed by the benefit of a better fit.  

Indeed, in the AIC 

 

 AIC(LPPL1) 512,849 AIC(LPPL2) 557,529  
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and in the SBIC 

 

 SBIC(LPPL1) 512,785 SBIC(LPPL2) 557,430 . 

 

 For robustness, we tested the stability of the fitting parameters by varying the size of 

the fit intervals through different time windows (Jiang et al. 2010). The windows were both 

squeezed and stretched. Figures 3 and 4 show overlaid fits with very similar patterns. In 

Figure 3 the size of the fit intervals were changed in steps of 592 minutes by squeezing the 

windows using a fixed end time at 10:09 am of May 25, 2010, and a starting time 

increasing from 3:09 pm of September 18, 2009 to 1:48 pm of October 26, 2009. In Figure 

4 the same was done but now by stretching the windows considering a fixed starting time at 

3:09 pm of September 18, 2009, and the end point increasing from 10:06 am of April 19, 

2010 to 10:09 am of May 25, 2010. The values at the end of the range were extrapolated 

until 10:09 am of May 25, 2010 on the basis of the adjusted parameters. 

 

3. Conclusion 

 

The flash crash of May 6, 2010 in the DJIA index was a crash in high-frequency trading. 

Log-periodic crashes are the result of the buildup of correlations thanks to imitation 

between traders in bubble episodes. Although robot trading may not be the culprit in 

triggering the flash crash, high-frequency trading may have generated correlations in 

timescales of seconds. This may explain the fact that we cannot dismiss the hypothesis of a 

log-periodic nature for the flash crash. In particular, this study showed that a two-harmonic 

formula fits well the data. 
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Table 1. Log-periodic fit for the flash crash of May 6, 2010 

coefficient estimate approx. 

standard error 

approx. 95% confidence limits 

lower upper 

 

A  9.289 0.001 9.288 9.290 

B  0.037 0.001 0.038 0.036 

1C  0.0081 0.0001 0.0079 0.0083 

2C  0.0178 0.0001 0.0176 0.0178 

 0.60 0.01 0.61 0.58 

1
 1.42 0.03 1.36 1.47 

2
 2.10 0.01 2.07 2.13 

1
 17.20 0.03 17.15 17.26 

2
 9.98 0.01 9.96 10.00 

1
 12.81 0.01 12.78 12.83 

2
 19.55 0.01 19.53 19.56 

 

 

 
Figure 1. Daily chart of the Dow Jones Industrial Average index during the May 6, 2010 

flash crash. 
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Figure 2.  Critical time interval of the natural log of the Dow Jones Industrial Average 

index sampled at a one-minute frequency (October 2, 2009 to May 31, 2010) and a two-

harmonic log-periodic fit. See Table 1. 

 
Figure 3. Overlaid fits. The size of the fit intervals were changed in steps of 592 minutes by 

squeezing the windows using a fixed end time at 10:09 am of May 25, 2010, and a starting 

time increasing from 3:09 pm of September 18, 2009 to 1:48 pm of October 26, 2009. 

Twelve different time windows were considered, beginning with the longest of 61,984 

minutes, then the subsequent one of 61,392, and so on, following steps of 592 minutes 

each. Horizontal solid lines represent the range of variation of the time windows whereas 

vertical dotted lines represent the starting time of each fit. The original fit seems stable. 

 

bottom of the flash crash 

at 2:45 pm of May 6, 

2010 

critical time: 9:32 am of 

October 2, 2009 
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Figure 4. Overlaid fits. The size of the fit intervals were changed in steps of 592 minutes by 

stretching the windows considering a fixed starting time at 3:09 pm of September 18, 2009, 

and the end point increasing from 10:06 am of April 19, 2010 to 10:09 am of May 25, 

2010. Twelve different time windows were considered, beginning with the shortest of 

54,880 minutes, then the subsequent one of 55,472, and so one, following steps of 592 

minutes each. The values at the end of the range were extrapolated until 10:09 am of May 

25, 2010 on the basis of the adjusted parameters. Horizontal solid lines represent the range 

of variation of the time windows whereas vertical dotted lines represent the ending time of 

each fit. The original fit seems stable. 
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