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Abstract 

This paper discusses Bayesian procedures for factor selection in dynamic term structure models through simulation 
methods based on Markov Chain Monte Carlo. The number of factors, besides influencing the fitting and prediction of 
observed yields, is also relevant to features such as the imposition of no-arbitrage conditions. We present a 
methodology for selecting the best specification in the Nelson-Siegel class of models using Reversible Jump MCMC.
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1 Introduction and Methodology

Selecting the appropriate speci�cation in econometric models is fundamental to guaran-
tee the expected econometric properties, such as consistency, absence of bias and e�ciency.
The functional form and variables included in the speci�cation chosen by the researcher
also has important practical consequences, such as the predictive performance of the model,
and in models used in �nancial applications, the estimated speci�cation can a�ect the asset
prices derived from the model.

In the analysis of dynamic econometric models for the term structure of interest rates,
the functional form chosen, besides the in�uence on the properties of estimators and fore-
casts, may also have important consequences on the validity of no-arbitrage conditions.
The functional form chosen is directly associated with the consistency with no-arbitrage in
the sense de�ned in Filipovic (1999) and Filipovic (2001). In the widely used Nelson-Siegel
family (Nelson and Siegel (1987)) of models is possible to show that original Nelson-Siegel
speci�cation is not consistent with no-arbitrage, but the addition of an additional slope
factor, leading to the model proposed by Svensson (1994), allows a speci�cation consis-
tent with no-arbitrage (although limited in the empirical �t), and the overall consistency
is achieved by an additional latent factor, leading to the �ve factor model of Björk and
Christensen (1999).

These conditions were then reformulated in the a�ne formulation for the Nelson-Siegel
family proposed in Christensen et al. (2009), Christensen et al. (2010) and Joslin et al.
(2011). In this formulation consistence with no-arbitrage is obtained when the model
contains three or �ve factors, but not in other speci�cations. The validity of no-arbitrage
conditions is related to the matching of each slope factor with a associated curvature.
This way, the imposition of no-arbitrage conditions depends on the validity of appropriate
speci�cation, related to the number of factors chosen. It is also important to note that
the arbitrage free formulation of Christensen et al. (2009) and Christensen et al. (2010),
consistence with the no-arbitrage is obtained by adding an correction factor in the Nelson-
Siegel family. For example in the formulation of the model with �ve factors the arbitrage
free curve is given by:
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the �ve latent factors and λ1, λ2 the decay factors of the Nelson-Siegel model. In this
speci�cation correction for no-arbitrage is given by the term C(t, T ), which is basically
a function1 of the parameters λ1 and λ2. Because of this term C(t, T ) the procedure of

1The analytical form of this term is quite extensive, and therefore omitted from the article, but can be
found in Christensen et al. (2009) and Christensen et al. (2010).
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model selection is crucial in the analysis of consistency with no-arbitrage. For example
the model with three factors (including X1

t , X
1
t and X4

t ) is arbitrage-free, but the models
with only one factor (X1

t ) and four factors (X1
t , X

2
t , X

4
t and X5

t ) are not consistent with
no-arbitrage.

Note that the usual procedures of model selection are hampered by the nonlinear for-
mulation that contains common parameters in the de�nition of the latent factors. Each
decay parameter λi a�ects both the associated slope and curvature factors. Besides the
trivial case of misspeci�cation raised by the omission of a signi�cant latent factor, note
that the factor analysis with a redundant (e.g. correct model contains four factors and the
estimated model contains �ve factors), due to the nonlinearity of the model, consistency
of the estimation is no longer valid, as it would in the speci�cation of a linear regression
model. This problem hinders the use of traditional methods of model selection such as
information criteria, which are only consistent (BIC by example, e.g. Claeskens and Hjort
(2008)) in the selection of linear models, property which is not generally valid for nonlin-
ear models. Another di�culty in using information criteria is that the validity of these
procedures is only asymptotic and �nite sample properties may not be optimal.

Because of these di�culties, this paper proposes the use of Bayesian methods based on
Reversible Jump Markov Chain Monte Carlo (RJMCMC). This methodology generalizes
the sampling framework of Markov Chain Monte Carlo (e.g. Gamerman and Lopes (2006),
Robert and Casella (2005)) to perform the estimation of models whose dimension is vari-
able. In this situation we can adequately address the problem of selection of variables and
models, and perform procedures such as model averaging. A Bayesian model of variable
dimension2 can be de�ned as an indexed collection of models:

Mk = {p(•|θk); θk ∈ Θk} (2)

associated with a collection of priors on the parameters of these models, denoted by
pk(θk). It is also necessary de�ne a prior on the index of the model - %(k), k = 1, . . . , K.
We uni�ed the notation for the structure of priors as pk(k, θk) = %(k)pk(θk). This is
a proper density de�ned with respect to Lebesgue measure on the union of the spaces
Θ = ∪k{k}×Θk.With this structure we can obtain the posterior distribution of parameters
via Bayes' theorem:

p(Mi|x) =
%(i)
´

Θi
pi(x|θi)pi(θi)dθi∑

j %(j)
´

Θj
pj(x|θj)pj(θj)dθj

. (3)

We can choose the model with the highest p(Mi|x), or then perform a procedure of
model averaging: ∑

j

p(Mi|x)

ˆ
Θj

pj(x|θj)pj(θj)dθj (4)

2We follow the de�nition adopted in Robert and Casella (2005).
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with x denoting the observed sample and the above equation as a predictive density.
Although this structure is a Bayesian complete model, there are several computational
di�culties. Methods as Gibbs sampling can not be directly used in this context, since it
is necessary to de�ne how transitions between modelsMi will be made

3.
The methodology known as Reversible Jump MCMC, proposed by Green (1995), is

based on the determination of a reversible transition kernel between models, i.e., a kernel
satisfying

´
A

´
B
K(x, dy)p(x)dx =

´
A

´
B
K(y, dx)p(y)dy for A,B ⊂ θ and p representing

the invariant density of the model. The kernel represents the transition between di�erent
models using the following decomposition:

K(x,B) =
∑
m

ˆ
B

ρm(x, y′)qm(x, dy′) + ω(x)IB(x) (5)

with qm denoting the transition function for the modelMm, with transition probabil-
ities ρm. We de�ne the probability of not transition as ω(x) = 1 −

∑
m(qm, pm)(x,Θm).

Under some technical conditions we can de�ne the probability of transition inside the usual
Metropolis-Hastings procedure:

ρm(x, y) = min

{
1,
gm(y, x)

gm(x, y)

}
(6)

with gm(.) denoting the instrumental density.
The algorithm proposed by Green (1995) solves the computational problem of the

change (jump) between the di�erent models considered through supplementation of the
spaces Θk1 and Θk2 with arti�cial spaces, creating a bijection between the models. For
example, this solves the problem of distinct parameter's dimension between each model
considered, and also allows to create the necessary Jacobians of these transformations, by
the use of instrumental models with a �xed dimension, usually taken by the size of the
largest model considered. The details of computational implementation used in this work
can be found in Lunn et al. (2009), which discusses the necessary changes in Gibbs and
Metropolis-Hastings sampling procedures to implement the Reversible Jump MCMC of
Green (1995).

To implement the Reversible Jump MCMC procedure for model selection in the family
of Nelson-Siegel models, we perform some modi�cations on the procedures proposed in
Green (1995) and Lunn et al. (2009), using some special features of this family of models.
Note that conditional to the decay parameters λi, the speci�cation given by equation 1 is a
linear model. The second modi�cation is the possibility of to analyze the average behavior
of the relevant factors, thus avoiding direct estimation of latent states, as in Diebold and
Li (2006), Christensen et al. (2009) and Christensen et al. (2010). This simpli�cation
allows performing model selection through the methodology of Reversible Jump MCMC
developed for selection of linear regression models.

In �rst stage of the estimation of each sub-model, we estimate the parameters λi for
each proposed model by Metropolis-Hastings sampling. Conditional to the estimation these

3See Robert and Casella (2005) for a discussion of problems involved.
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Figure 1: Fama-Bliss Database
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parameters, the model becomes conditionally linear and we can perform the Reversible
Jump algorithm to the estimation of loadings X̄1, X̄2, X̄3, X̄4 and X̄5. The selection of
these loadings is performed assuming that these parameters are constant throughout the
sample, and so we analyze the in�uence of each factor by the average e�ect. Note that
this assumption is not restrictive, being based only on the assumption of existence of a an
invariant distribution for these factors.

Another exploited property is to assume that the X̄1 is present in all speci�cations.
Because this factor has a level interpretation in the yield curve, it is always present in
all speci�cations, and thus the model selection procedure may be restricted to the combi-
nations between factors X̄2, X̄3, X̄4, X̄5, reducing the space of models analyzed. Another
important point is that given the interpretation of slope and curvature of the other latent
factors, they are approximately orthogonal, which avoids the transformation of regressors
to orthogonal coordinates, as discussed in Robert and Casella (2005).

2 Database and Results

This study examines the same database of Diebold and Li (2006), Christensen et al.
(2009) and Christensen et al. (2010). The base is composed of unsmoothed forward rates of
U.S. Treasuries obtained by the procedure of Fama and Bliss (1987), with �xed maturities
of 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months, using
monthly observations for the period 1985:01 - 2000:12, containing 192 observations of this
curve. Figure 1 shows the database used. Descriptive statistics and other properties can
be found in Diebold and Li (2006).

To complete the Bayesian speci�cation, we de�ne the set of priors for the parameters of
interest. We assume that the priors for the decay parameters are λ1 ∼ logNormal(−2.337901, 1),
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Table 1: Posterior Model Probabilities p(Mi|x)
model structure posterior prob. cumulative prob. log marginal likelihood

11010 9.0901E-5 0.00009 827.568
11011 9.5454E-4 0.00104 1144.065
10110 0.001909 0.01622 1326.232
10111 0.013272 0.002954 1336.614
11100 0.032681 0.048909 703.9478
11101 0.139181 0.188090 1260.590
11110 0.156227 0.344318 1169.585
11111 0.655681 1.000000 1350.823

λ2 ∼ logNormal(−0.1768565, 1), consistent with the values estimated in Diebold and Li
(2006), Christensen et al. (2009) and Christensen et al. (2010). For the factors X̄2, X̄3, X̄4, X̄5

we assume a multivariate gamma-normal distribution p(τ, X̄|k) = Ga(τ |a, b)×MVN(X̄|µ, τ−1Ik)
where µ = 0 and Ik is an identity matrix of dimension k, with the dimension of the sub-
model being evaluated, which is equivalent to imposing a same precision for all elements of
the multivariate normal distribution. In this problem we assume a di�use prior precision
τ−1 =.0001. The hyperparameters a and b of Gamma prior are given by the .75 and .75.
The last relevant prior is that de�nes the number of factors included in each speci�cation.
For the reported results, we use %(k) ∼ Binomial(.6, 4).

Regarding the set of priors used, we conducted some sensitivity analysis. The results
basically remain unchanged in relation to the priors for the X̄ i, precisions and decay
parameters λi. The posterior probabilities of each sub-model are in�uenced by the prior
value for the number of factors, but the overall results do not change relevantly, since even
with a low probability for the number of factors (%(k)=.2), the posterior probabilities of
all the latent factors are still relevant, with minimum probability of .24 for each term,
thus further justifying the inclusion of all factors. To obtain the posterior distributions,
we run the MCMC procedure using 50,000 initial iterations (burn-in), and over 500,000
simulations to construct the posterior distributions.

The posterior probabilities of each analyzed model are placed in Table 1. The column
model structure shows the factors included in each speci�cation. One denotes that the
latent factor X i is included, and zero that the factor is not included in the speci�cation. As
an example, in the �rst line we have the posterior probability of the model with level, slope
and curvature factors, according to the ordinance adopted in equation 1, corresponding to
the original Nelson-Siegel model. In the next column we �nd cumulative probability of all
models analyzed. We also show in this table the values of the marginal log-likelihood for
each sub-model, calculated using the modi�ed harmonic mean approach of Raftery et al.
(2007).

The results support a complete speci�cation for this dataset, indicating that the model
with �ve factors obtains the highest posterior probability among all estimated speci�ca-
tions. The marginal log-likelihood, as expected, favors the model with �ve latent factors,

5
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Table 2: Marginal Probabilities
Factor marginal prob.

2 0.9850
3 0.9957
4 0.8213
5 0.8209

Figure 2: Model Fit - Bayesian Model Averaging
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but has a di�erent result in relation to sub-models with three and four latent factors,
favoring the sub-models 10110 and 10111, while the RJMCMC methodology indicates a
high posterior probability to sub-model 11110, a result more consistent with the practical
applications of these methods, that always include the �rst slope factor in the model.

Another way to analyze this result is through the marginal probabilities of each model,
shown in Table 2. We obtain high marginal probabilities for all latent factors in the
Nelson-Siegel family, supporting the use of models with �ve factors proposed in Björk and
Christensen (1999) and Christensen et al. (2009), and consistent with no-arbitrage, an
important �nancial result. Also we can see evidence in favor of a greater number of factors
in the posterior distribution of parameter %(k), which indicates the number of factors
included in each model. The posterior distribution of parameter %(k) has posterior mean
of 3.67, supporting the largest number of factors.

To illustrate the application of Reversible Jump MCMC methodology as a Bayesian
model averaging procedure, we illustrate the model �t obtained by weighting all models
analyzed by the estimated posterior probabilities, according to equation 4. Figure 2 show
the average yields over time (marked with circles in �gure), compared to the �t obtained by
model averaging, in the continuous line. The results shows that weighted model provides
an excellent �t for the average yields observed in this sample.

3 Conclusions

In this paper we introduce the use of Reversible Jump Markov Chain Monte Carlo

6
2173



Economics Bulletin, 2011, Vol. 31 no.3 pp. 2167-2176

methods for model and factor selection in dynamic term structure models. From the
special structure of Nelson-Siegel family, it is possible to adapt procedures used in the
selection of linear models to explore all possible speci�cations derived from this family of
models.

These speci�cations have important consequences on �tting, prediction and consistency
with no-arbitrage, and the Reversible Jump MCMC procedure allows overcome the limi-
tations in the usual procedures for model selection, such as only asymptotic consistency
for linear models.

Other methodologies that could be used in this context are the procedures for calcu-
lating posterior probabilities of models using Gibbs Sampling, as Carlin and Chib (1995),
Condgon (2007) and Dellaportas et al. (2002), and the Stochastic Search algorithm of
George and McCulloch (1993), with the observation that these procedures are intended
for use in generalized linear models, while the speci�cations analyzed in this article are
formulated as nonlinear regressions.

Also important in this context are the algorithms for selection of the number of factors
proposed by Lopes and West (2004) and Frühwirth-Schnatter and Lopes (2010) in traditi-
tional factor analysis, and especially the work of Frühwirth-Schnatter and Wagner (2010),
which discusses procedures for selection of factors in state-space models. In particular the
formulation of a regression model with time-varying parameters, which is analogous to the
dynamic Nelson-Siegel model, is pointed in Frühwirth-Schnatter and Wagner (2010) as a
possible development of this methodology. A comparative analysis with these methods
and other procedures of Bayesian model selection and averaging is a promising topic for
future study, particularly in relation to the procedure of Frühwirth-Schnatter and Wagner
(2010), which allows the estimation of the full vector of latent states.
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