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1. Introduction 
 

In the 2007 subprime mortgage crisis, obtaining adequate short-term liquidity was important 
to some financial intermediaries, particularly MMMFs (money market mutual fund), in 
order to prevent a possible fund run. When financial markets go through a credit crunch 
period, the liquidation cost of long-term assets increases as the market value of such assets 
decreases under mark-to-market accounting rules. As a result, some investors worry about 
capital loss of their investment and therefore may wish to withdraw earlier than they would 
have if the crisis had not occurred. For example, a recent report under the title “Shadow 
banking, financial markets and financial stability” by the Deputy Governor of the Bank of 
England stated the following: “Money market funds have become a gigantic part of the US 
and European financial systems, and just like banks, they are subject to runs…So their own 
maturity mismatches mask the true liquidity position of the banking sector, and inject extra 
fragility into the financial system as a whole.”1  

One way to give confidence back to the investors and to ease their concerns would be 
deposit insurance, as in banks, where there was no run concern in the US. Another way 
would be to reserve sufficient liquid assets; nevertheless, the returns on liquid assets may be 
lower. However, the literature on the fund industry has not yet considered such liquidity 
provision to prevent runs. In bank run literature, Cooper and Ross show the necessity of 
liquidity provision in order to prevent runs. Thus it would be worthwhile to extend Cooper 
and Ross (1998). By allowing varying liquidation costs, captured by τ , where [0,1]τ ∈ ,2 
we theoretically derive the adequate holding of liquidity in MMMF to prevent a run as  a 
function of τ . 

 
 

2. The model 
 

The model is a modified version of Diamond-Dybvig (1983). There is a unit mass of an 
infinite number of identical agents within a range of [0, 1], each of whom lives over three 
periods, t=0, 1, and 2, and is born with a unit endowment, which they deposit with an 
intermediary in period 0. At the start of period 1, agents are informed about their 
consumption types. A fraction π learn that they obtain utility from period 1 consumption 
only (early consumers), while the others obtain utility from period 2 consumption (late 
consumers). We assume that π  is non-stochastic and known to all agents and an 
intermediary; 1c  and 2c  denote the consumption levels for early and late consumers, 

                                          
1 “Money Market funds have become a gigantic part of the US financial system; at about $3trn, being 
roughly the same size as the transaction deposits of commercial banks. They are pretty big in Europe 
too – around $1.5trn. They offer a bank-like service: almost instant liquidity... And they lend it out, 
purchasing commercial paper of various types as well as treasury bills and providing repo 
financing....On both sides of the Atlantic, many are so-called Constant Net Asset Value (CNAV) funds. 
Stripping through the detail, this means that they promise to return to savers, on demand, at least as 
much as they invest. Just like a bank. And just like a bank, they are subject to runs… And, if a 
Constant-NAV fund’s value goes just a few basis points below par (100p in the £1), they effectively 
have to close, fuelling the incentive to run... So their own maturity mismatches mask the true liquidity 
position of the banking sector, and inject extra fragility into the financial system as a whole.” 
2 However, they did not examine an adequate level of liquidity provision across different liquidity 
costs, because the bank is free of a run concerns for the presence of either deposit insurance protection 
or other guarantees. 
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respectively. The agent’s utility function of i i(c )u  is described as log ic , where {1,2}i∈ , 

is strictly increasing and strictly concave. 
 
 

2.1 With No Liquidation Cost 
 

There are two investment technologies available for transferring resources over time. First, 
there is a productive technology that provides a means of shifting resources from period 0 to 
2, with a return of R>1 over the two periods. However, early liquidation of the technology in 
period 1 yields only unit per unit of period 0 investment. Second, there is a liquid 
technology that yields one unit in period t+1 per unit of period t investment, t=0, 1.We 
denote the amounts of liquid and illiquid investments as 1i  and 2i , respectively.  

We assume that there is an intermediary operating in a competitive environment, which 
compels it to offer contracts that maximize a representative agent(consumer)’s ex-ante 
expected utility, subject to its break-even constraint. The intermediary’s goal then is to 
choose optimal levels of  1c , 2c , 1i , and 2i  with two associated Lagrange multipliers as 
follows: 

1 2 2, , 1 1 2 2max ( ) (1 ) ( )c c i u c u cπ π+ −  
 s.t. 1 21c iπ ≤ − , 2 2(1 )c Riπ− ≤  as 1i  is dominated. 
 
Here we ignore liquid technology, because it is completely dominated by illiquid 

technology from the choice set in period 0, as the productive technology provides a higher 
return in two periods of investment as well as yielding the same return as the liquid 
technology in one period of investment. Taking the two resource feasibility conditions as 
binding based on the property of '( ) 0i iu c > , we can solve for the values of 2i  and 2c  as a 
function of 1c . The intermediary’s optimization problem is then simplified for maximizing 
the representative consumer’s utility with respect to 1c  as follows: 

 
1

1
1 1 2

1max ( ) (1 ) ( )
1c

cu c u ππ π
π

−
+ −

−  
 
First Order Condition (FOC) with respect to 1c  gives the solution as *

1 1c = . Now, 
replacing this value into the above two resource constraints generates the associated optimal 
values of 2i  and 2c  as * *

2 21 ,i c Rπ= − = . The above solution becomes the first best 
allocation because, if the ex-post agent consumption types were costlessly verifiable to the 
intermediary in advance, he (or she) would offer the same contract as above. Also, the above 
solution is not vulnerable to a run, because as *

2c turns out to be greater than 
*

1c , the late 
consumer’s motive for misrepresentation of being an early consumer through a fund run 
disappears.  

 
  

2.2 With Liquidation Cost 
 

Thus far, early liquidation cost of the productive technology was assumed to be zero. 
Hereafter, however, we introduce its liquidation cost. The cost is denoted by [0,1]τ ∈ , 
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where 0τ ≠ .3 Thus, early liquidation of an illiquid investment in period 1 yields only 
1 τ−  per unit of period 0 investment when the financial market is in a credit crunch. The 
liquid investment still provides the same one unit in period t+1 per unit of period t 
investment as before. Thus, the one-period return of the liquid technology becomes higher 
than that of the illiquid investment. Hence, for the intermediary, an incentive to hold the 
liquid asset now arises4 The resource feasibility conditions then change as follows when the 
intermediary decides to hold a nonnegative 1i :  

1 1 21c i iπ + ≤ − ,                   (1) 
2 2 1(1 )c Ri iπ− ≤ +                  (2) 

 
With 0τ ≠ , holding too much illiquid asset may bring a run against the intermediary when 
late consumers misrepresent themselves as early ones by withdrawing 2i  earlier, and 
therefore 1 21c i τ> −  occurs. In particular, if the level of 2i is one, a fund run is likely. With 
this run possibility, it is worthwhile to construct a run preventing contract (hereafter RPC).5 
No run condition is characterized by 1 21c i τ≤ − , as suggested in Cooper and Ross (1988). 
Also, holding a positive 1i  may be of value for either preparing for early consumption or 
preventing a run. The RPC contract of the intermediary involves levels of  1c , 2c , 1i , and 

2i , which is rewritten as follows:  
 

1 2 1 2, , , , 1 1 2 2 2 1max ( ) (1 ) ( ) [1 ]c c i i u c u c i cλ π π λ τ+ − + − −   
s.t. both equation (1) and (2), which are assumed to be binding hereafter  
 

By substituting 1c  and 2c  from the two equations (1) and (2) respectively into the above 
object function, we can rewrite the optimization only for 1i , 2i , and the multiplier λ  as 
follows.  

 
1 2, , 1 1 1 2 2 2 1 2 2 1 1 2max ( ( , ; , , )) (1 ) ( ( , ; , , )) [1 ( , ; , , )]i i u c i i R u c i i R i c i i Rλ π π τ π π τ λ τ π τ+ − + − −    (3) 

 
Taking derivatives on the object function with respect to 1i , 2i , and the multiplier λ   
yields the subsequent three FOC (First Order Condition)s, which can be written as in (4) 
through (6) below. 

 

1 2

1 1 1 0R
c c

λ τ
π
⎛ ⎞− + + − =⎜ ⎟
⎝ ⎠       (4) 

                                          
3 Diamond and Dybvig assume that 0τ = , ignoring the liquidation costs. However, in reality, 
liquidating illiquid projects earlier than before the maturity is associated with some costs. 
4 Holding 1i  over two periods is not desirable when consumer types are observable, because 
holding 1i  brings a lower rate of return than that of 2i  over the same period. 
5 Another candidate for RPC could be deposit insurance by the government. However, the insurance 
provision by the government sometimes becomes the very cause of an intermediary moral hazard, and 
hence we ignore the insurance provision here. Instead, we assure RPC by holding sufficient liquidity 
provision in advance. 
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1 2

1 1 0
c c

λ
π

− + + =
              (5)  

2 11 0i cτ− − =                  (6) 
 
The above three First Order Conditions jointly combined with the two resources 

constraints, equations (1) and (2), give the following optimal values. 
 

 
**

1
( 1)c π ϕ
π ϕ

+
=

+ ,
**

2 1c ϕ= + , where 
1Rϕ

τ
−

= 6
 

 
**

1
(1 ) ( (1 ) )
( )

i π ϕϕ π π
π ϕ τ
−

= + + −
+ , 

**
2

(1 )
( )

i ϕ π
τ π ϕ

−
=

+ , 
 and 1

ϕλ
ϕ

=
+

 

 under the condition of (1 ) ϕϕ π π
τ

+ + ≥
 
to yield a non-negative value of **

1i . 

 

Sketch of proof: First, when we substitute 
1

1
c

−  from equation (4) into equation (5), it 

solves for the value of 2c  as 
1R λ

τ
−

. Second, substituting this into equation (2)(i.e., 

2 2 1(1 )c Ri iπ− = + ) yields 2 1
(1 ) i R iπ ϕ

λ
−

= + , which is denoted as equation (7). Third, 

replacing 1c  from equation (1) by using equation (6) yields 1 21 (1 )i iπ πτ− = + − , which is 
denoted as equation (8). Fourth, using both equations (7) and (8) to solve for optimal values 
of 1i  and 2i  as a function of λ  yields the following equations, given the parameter 
values π ,τ , and R  : 

2

(1 )( 1)

1
i

R

ϕπ
λ
πτ

− −
=

− +
, 1

(1 )( )

1

R
i

R

ϕ ϕπ π
λ λ
πτ

− − +
=

− +
 

 
Fifth, substituting the previous two expressions of 1i  and 2i  into the resource constraints 
will provide optimal values of 1c  and 2c  as a function of λ . Sixth, plugging these two 
values into both 1c  and 2c  from equation (5) will solve for a unique optimal value of λ , 

which is 
1

ϕ
ϕ +

. Lastly, plugging this value of λ  back into the previously driven values of 

1i , 2i , 1c , and 2c  yields the optimal values of **
1c , **

2c , **
1i  and **

2i . QED 
  
 

                                          
6 For the sake of notation simplicity we introduce ϕ , which represents the ratio of net return (R-1) to 
liquidation cost (τ ):ϕ  being greater than one means that the net return on illiquid technology is 
greater than the cost of liquidation. On the other hand, ϕ  being less than one denotes that the net 
return is less than the liquidation cost. 
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Now, based on the derived optimal values of **
1i  and **

2i , we can derive the adequate 
amount of liquidity holding in MMF  as  a function of τ . Our main findings are 
summarized as Proposition 1: 

 
Proposition 1. As τ (liquidation cost) increases, **

1i (liquid investment) increases while 
**

2i (illiquid investment) decreases. 
 

Sketch of proof: After switching the expression of ϕ  in **
1i and **

2i as an explicit function 

of τ (i.e., 
1Rϕ

τ
−

= ), we can compute the values of 
**

1di
dτ , 

**
2di

dτ . In the re-expressed 

**
2

( 1)(1 )
( 1)
Ri

R
π

τ τπ
− −

=
+ − ,  τ  term only appears in the denominator. Therefore, it is clear that  

**
2 0di

dτ
< .  Now, for 

*
1di

dτ
, differentiating  **

1

1
( 1)(1 )

(1 )
( 1)

R
R

i
R

π τπ
τπ

τπ

−
− + + −

= −
+ −

with respect 

to τ  gives
  

2

** 2
1

2

2 ( 1)
( 1) ( )

(1 )
( 1)

R
Rdi

d R

π π
τ τπ

τ τπ

−
− − +

= −
+ − , which is positive as

 

2
2 π

τ
> >

. QED
  

 
Proposition 1 implies that when the liquidation cost of assets increases in a credit crunch 

period, reserving sufficient liquid assets is necessary to give confidence back to the MMF 
investor, even though the returns on liquid assets may be lower. Our analysis proves the 
prediction made by Cooper and Ross(1998).7 Owing to the  advantage of adopting a 
specific utility function of log ic , we succeed in deriving the optimal amounts of **

1c , **
2c , 

**
1i , and **

2i as explicit functions of π , τ , and R .  
We simulate the optimal level of illiquid and liquid investments depending on the 

liquidation cost. For the simulation, we assume R as 1.15 with net returns of 15%; the 
fraction of early consumer π is 1/3 and the endowment is 1. 

  

                                          
7 Cooper and Ross (1998) analyze two extreme cases where τ  values are either 1 or 0. Based upon 
those two cases, then, they predict that the amount of excess liquidity to be held for the RPC will 
depend upon the liquidation costs. 
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Figure 1 

 
Figure 2 

 
 
As shown in both figures, the optimal level of liquid investment, *

1i , increases as the 
liquidation cost τ  increases while the optimal level of illiquid investment, *

2i , decreases.   
 
 

2.3 Extension beyond the log functional form 
 

In this subsection, we extend the results driven in section 2.2 into a general CRRA (Constant 

Relative Risk Aversion) utility function, which is  ( ) i
i

cu c
σ

σ
= , where 1σ < . 8  The 

purpose of this exercise is to confirm that the finding in section 2.2 is applicable to a more 
general environment. Now the problem we face is to solve the previous constraint 
optimization once again with respect to 1c , 2c , 1i  and 2i , not in log utility but in a more 
general utility function: 

 
1 2, , 1 1 1 2 2 2 1 2 2 1 1 2max ( ( , ; , , )) (1 ) ( ( , ; , , )) [1 ( , ; , , )]i i u c i i R u c i i R i c i i Rλ π π τ π π τ λ τ π τ+ − + − −    (3) 

 
The subsequent three FOC(First Order Condition)s in the CRRA environment are written 
below as (8) through (10). 

                                          
8 If  σ  becomes zero, then the utility function returns to the previous log utility. In this line, this 
section tries to extend the previous result to a more general case. 
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1 1

1 2
1 0c Rcσ σ λ τ
π

− − ⎛ ⎞− + + − =⎜ ⎟
⎝ ⎠       (8)

 

1 1
1 2 0c cσ σ λ

π
− −− + + =

              (9) 
 

2 11 0i cτ− − =                   (10) 
 
When we combine the above three First Order Conditions with the two binding resources 

constraints, equations (1) and (2), we can derive the following optimal values. 
 

 

1
1

***
*** 2

1

1 (1 )
1 (1 )cc

σλϕ π
ϕϕ π

π ϕ π ϕ

−⎡ ⎤
+ − − ⎢ ⎥+ − − ⎣ ⎦= =

+ + ,

1
1

***
2 1

1

1

( )
1

c
σ

σ σ

λ ϕ
ϕ ϕ π

π
π

−

−

+
= =

+
+ −

⎡ ⎤
⎢ ⎥⎣ ⎦ ⎡ ⎤

⎢ ⎥
⎣ ⎦

,  

where 
1Rϕ

τ
−

=
, 

1

1

1

1

1

( 1)

( )
1

σ

σ

σ
σ

ϕ ϕ
λ

ϕ π
π

π

−

−

−

+
=

+
+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

 
1

1

***
2

(1 )( 1)

1
i

R

σλ
ϕ

π

πτ

−⎡ ⎤− −⎢ ⎥⎣ ⎦=
− +

, 

1
1

***
1

(1 )( (1 ) )

1

R
i

R

σλ
ϕ

π πτ

πτ

−⎡ ⎤− − − ⎢ ⎥⎣ ⎦=
− +

 

 
 

Sketch of proof: First, when we substitute 1
1c σ −− from equation (8) into equation (9), it 

solves for the value of 2c  as 

1
1σλ

ϕ

−⎡ ⎤
⎢ ⎥⎣ ⎦

. Second, substituting this into equation (2) yields 

1
1

2 1(1 ) i R i
σλ

ϕ
π

−⎡ ⎤− = +⎢ ⎥⎣ ⎦
, which is denoted as equation (11). Third, replacing 1c  from 

equation (1) by using equation (10) yields 1 21 (1 )i iπ πτ− = + − , which is denoted as 
equation (12). Fourth, combining both equations (11) and (12) to solve for optimal values of 

1i  and 2i  as a function of λ  gives the following equations, given the parameter values π ,
τ , and R  : 

1
1

2

(1 )( 1)

1
i

R

σλ
ϕ

π

πτ

−⎡ ⎤− −⎢ ⎥⎣ ⎦=
− +

, 

1
1

1

(1 )( (1 ) )

1

R
i

R

σλ
ϕ

π πτ

πτ

−⎡ ⎤− − − ⎢ ⎥⎣ ⎦=
− +
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Fifth, substituting the previous two expressions of 1i  and 2i  into the resource 
constraints will provide optimal values of 1c  and 2c  as a function of λ . Sixth, plugging 
these two values into both 1c  and 2c  from equation (9) will give a unique optimal value of

λ , which is  

1

1

1

1

1

( 1)

( )
1

σ

σ

σ
σ

ϕ ϕ

ϕ π
π

π

−

−

−

+

+
+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. Lastly, plugging this of λ  back into the previously 

driven values of 1i , 2i , 1c , and 2c  yields the optimal values of ***
1c , ***

2c , ***
1i , and ***

2i . 
QED 

 
To check the consistency between sections 2.2 and 2.3, we put the value of 0 into σ , 

which is the power term of CRRA utility, and then derive λ  and ***
1c . Now we can see 

that these values are exactly the same values as driven in section 2.2 (i.e., **
1

( 1)c π ϕ
π ϕ

+
=

+
, 

1
ϕλ

ϕ
=

+
) . The remaining ***

2c , ***
1i , and ***

2i  values become the same **
2c , **

1i , and 

**
2i  in section 2.2. Now, using ***

1i , and ***
2i , we can derive the optimal amount of liquidity 

holding in MMMF as a function of τ  in Proposition 2 once again. 
  
 

Proposition 2. As τ (liquidation cost) increases, ***
1i (liquid investment) increases while 

***
2i (illiquid investment) decreases. 

 

Sketch of proof: Considering 

1
1***

2c
σλ

ϕ

−⎡ ⎤= ⎢ ⎥⎣ ⎦
, we can rewrite ***

1i  and ***
2i  as follows: 

***
*** 2

2
(1 )( 1)

1
ci

R
π

πτ
− −

=
− +

, 
***

*** 2
1

(1 )( (1 ) )
1

R ci
R

π πτ
πτ

− − −
=

− +  

Now, Regarding computation of the values of 
***

1di
dτ

, 
***

2di
dτ ,  

from the above expression, 

we can see that the sign of 
***

2dc
dτ  

is crucial and that the signs of
 

***
1di

dτ
, 

***
2di

dτ are 

subsequently determined
 
depending on the sign of

 

***
2dc

dτ  
or

 

***
2dc

dϕ  
, where

 

1Rϕ
τ
−

=
. 

Note that the sign of
 

***
2dc

dτ  
is exactly the opposite of the sign of 

***
2dc

dϕ . 
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 Now, for 
***

2dc
dϕ , 

differentiating  

1
1

***
2 1

1

1

( )
1

c
σ

σ σ

λ ϕ
ϕ ϕ π

π
π

−

−

+
= =

+
+ −

⎡ ⎤
⎢ ⎥⎣ ⎦ ⎡ ⎤

⎢ ⎥
⎣ ⎦

with respect to ϕ   

gives
  

1

1

***
2

21
1

( )
1

11
1

( ) 1

dc
d

σ σ

σ σ

ϕ π
π

π
σ ϕ

σ ϕ π
ϕ

ϕ π π
π

−

−

+
+ −

=

⎡ ⎤ ⎡ ⎤+
−⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦

⎧ ⎫
⎡ ⎤+⎪ ⎪+ −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

, which is positive, as both the 

denominator and numerator are positive. In particular, the numerator is positive as 1σ < . 
 ***

2 0dc
dτ

<
 
because

 

***
2 0dc

dϕ
> , which means that

 
 

*** ***
1 2(1 )(1 ) 0

1
di dc
d R d

π πτ
τ πτ τ

− − −
= >

− +
, 

*** ***
2 2(1 ) 0

1
di dc
d R d

π
τ πτ τ

−
= <

− + . 
QED  

 
Thus, in this section, we extend the result of log utility into CRRA utility and find that the 

necessity of short-term liquidity holding becomes stronger to prevent runs when the market 
crashes. 

   
 

3. Conclusion 
 

We derive the intermediary’s optimal holdings of both liquid and illiquid investments as a 
function of the liquidation cost. We show that when the level of liquidation cost becomes 
higher as the loss of asset value accumulates, the associated level of liquid holding should 
increase rapidly in order to prevent a run. Further, we extend the finding in simple log utility 
into CRRA utility. Finally, for future research, it would be interesting to consider a 
randomized liquidation value, as the outlook on future financial market variables becomes 
more volatile with a certain extent of uncertainty rather than being deterministic. This will 
be a good complement to the current study. 
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