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1. Introduction 
 

The problem of modeling “count” data arises frequently in economics. These data are non-
negative integers, so the linear regression model is discarded in favor of an appropriate discrete 
probability distribution and covariates are introduced through its mean. The simplest count 
model is based on the Poisson distribution, despite the limitations implied by the equivalence of 
its mean and variance. This model provides the starting point for other models (such as the 
negative binomial) that allow for over-dispersion, as well as models that allow for count 
“inflation”, especially with respect to zero counts. So, the central role of the Poisson regression 
model means that its performance is of considerable interest. 

The Poisson regression model is generally estimated by using the maximum likelihood 
estimator (MLE). It is well known that the likelihood function for this model is concave, so the 
MLE is unique. This estimator for the Poisson regression model possesses its usual desirable 
asymptotic properties, but surprisingly little is known about its finite-sample properties, once 
covariates are introduced into the model. Using Monte Carlo simulation experiments, for models 
with one covariate, Breslow (1990, p.568) reported biases in the range 1.2% to 1.9% when the 
sample size (n) = 36, 72; and Brännäs (1991, 234-235) reported biases in the range -2% to 1% 
when n = 50.  

Recently, Chen and Giles (2011) derived analytic approximations for the bias and mean 
squared error (MSE) for the MLE of the Poisson regression model when the regressors are 
stochastic. However, their approach yields expressions that are quite unwieldy, and are not 
readily simplified to the case of non-random covariates. Our methodology is based on work by 
Cox and Snell (1968) and others, and is fundamentally different from that used by Chen and 
Giles (2011). We develop a simple analytic expression for the bias, to O(n-1), of the MLE in the 
Poisson regression model with non-random covariates. The approach that we use, and this order 
of approximation, is standard in the statistics literature (e.g., Giles, 2011; Schwartz et al., 2011). 
It yields a simple and tractable expression for the bias, even though the MLE cannot be 
expressed in closed form. However, this approach is not suited to the situation of random 
regressors. We use the estimated bias to “bias-correct” the MLE, and find that dramatic 
reductions in bias can be achieved in small samples, without any increase in MSE. Our approach 
is “corrective”, rather than “preventive”. Firth (1993) provides an analytic approach to bias 
reduction of the latter type, but in practice little difference has been found in the performances of 
the two approaches. 

Section 2 summarizes the methodology used to determine the finite-sample bias of the 
MLE, and this is applied to the Poisson regression model in section 3. Section 4 provides 
simulation evidence relating to the quality of the “bias-corrected” MLE. Although we are 
concerned here mainly with presenting a new theoretical result, its practical usefulness is also 
important. So, we present three illustrative empirical applications in section 5; and our 
conclusions are in section 6.  
 

2. Bias Reduction 
 
Let )(l  be a log-likelihood function that is regular with respect to all derivatives up to and 
including the third order, and is based on a sample of n observations and a )1( p  parameter 
vector, θ. The joint cumulants of the derivatives of )(l , which are assumed to be O(n), are: 
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and denote: 
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Cox and Snell (1968) showed that when the sample data are independent (but not necessarily 
identically distributed) the bias of the sth element of the MLE of θ ( )̂ is: 
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where kij is the (i,j)th element of the inverse of the information matrix, }{ ijkK  . Using the usual 

“vec” notation to denote the stacking of the columns of a matrix, equation (5) can be written as: 
 

  )()()ˆ( 211   nOKvecAKBias  ,      (6) 
where  
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ij kka  , for i, j, l = 1, 2, …., p.     (9) 

 
Equation (6) provides the bias, to O(n-1), for the MLE. This is the standard order of 

magnitude for such evaluations. A “bias-corrected” MLE for θ can then be obtained as: 
 

)ˆ(ˆˆˆ~ 11  KvecAK ,        (10) 
 
where  ̂|)(ˆ KK   and  ̂|)(ˆ AA  . The advantage of the estimator ~  is that it has a bias that is 

O(n-2). This bias correction is valid for any n, but becomes redundant, of course as n . 
 

3. The Poisson Regression Model 
 
The Poisson regression model assumes that the count data (yi) follow the Poisson distribution: 
 !/]|.[Pr i

y
iii yexyY ii  ; yi = 0, 1, 2, 3, …….     

where   
 )'exp(  ii x    ; i = 1, 2, …, n  
     
and ix  is a )1( p vector of covariates, ix . The ith observation on the vector of marginal effects 
is i , so these effects have the same sign(s) as the parameter(s).  
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With independent sampling, the log-likelihood function is 
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the likelihood equations are 
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As (12) does not involve the y data,  
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and the information matrix is 
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There is no closed-form solution to (11), so the MLE for β must be obtained numerically. 
However, as the Hessian is negative definite for all x and β, the MLE ( ̂ ) is unique. From (12) 
and (13): 
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To make matters more transparent, consider the case of a single covariate and an 

intercept. Then xi is a scalar observation and  
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These biases may be positive or negative, depending on the sample data and the true 

parameter values. They apply for n of any magnitude, and vanish as n . Bias-corrected 
MLEs are  
 

)ˆ(ˆˆ~
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where )ˆ(ˆ ssaBi   is obtained by replacing i  by  )ˆˆexp(ˆ

21 ii x  in (17) and (18).  
 

Extending the above discussion to the case where the conditional mean is a function of 
two covariates and an intercept, 
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The biases of the MLEs, and the bias-adjusted estimators, follow by inserting these expressions 
into equations (6), (7) and (10). Again, the directions of the biases are data-dependent. 
 

4. A Simulation Experiment 
 

We have undertaken a Monte Carlo experiment to evaluate the effectiveness of our bias 
corrections. Recalling that our bias expressions are valid to O(n-1), the exact biases and MSEs of 
the MLEs and bias-corrected MLEs have been simulated using code written for the R statistical 
software environment (R 2008). The log-likelihood function was maximized using the Newton-
Raphson method in the maxLik package (Toomet and Henningsen 2008). Each part of our 
experiment uses 100,000 Monte Carlo replications. In the two-covariate case we consider various 
degrees of correlation (ρ) between the regressors. The results in Tables I and II are for regressors 
that are standard normal, but fixed in repeated samples. Similar results were obtained for (fixed) 
regressors distributed uniformly on [0 , 1], and these are available on request. Tables I and II 
report percentage biases and MSEs, defined as 100 (Bias / | βs |) and 100 (MSE / βs

2).  
The magnitudes of the reported biases for the (uncorrected) MLEs are consistent with 

those reported by other authors in their simulation experiments, as discussed in section 1. They 
are quite small, except for very small sample sizes. The effectiveness of our bias correction is 
clear in all of the cases tabulated. The percentage biases themselves are substantially reduced by 
applying this correction – often by one or two orders of magnitude. For example, in Table I(b) 
when n = 25, the percentage bias of the original MLE for the intercept coefficient is -1.5%, and 
this is reduced to -0.005% by bias-correcting. Not surprisingly, the reduction in bias comes at the 
expense of some increased variability. However, the percentage MSEs are also either slightly 
reduced or essentially unaltered by bias-adjusting the estimators. Taking the previous example 
from Table I(b), the %MSE falls marginally, from 1.7% for the original MLE to 1.6% for the 
bias-corrected MLE. It is also clear from these results that the known asymptotic unbiasedness of 
the MLE actually reveals itself quite quickly – namely, by the time that the sample size reaches 
200. So there is no point in considering larger sample sizes here. This information is useful to a 
practitioner who is estimating a Poisson regression model with a modest sample size of, say, 500 
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observations. Reliable maximum likelihood estimation of the Poisson regression model does not 
require thousands of cross-section observations. 
 

 
Table I: Percentage biases and MSEs of the MLEs and bias-corrected MLEs – 

intercept and one regressor 
 

n )ˆ(% 1Bias  )
~

(% 1Bias   )ˆ(% 2Bias  )
~

(% 2Bias  

[ )ˆ(% 1MSE ] [ )
~

(% 1MSE ]  [ )ˆ(% 2MSE ] [ )
~

(% 2MSE ]  
 
 

(a)  β1 = 1, β2 = 0.5 
 

10 -3.8408 -0.0703  2.3409  0.1265 
 [6.0244] [5.5523]  [10.8055] [10.5440] 
25 -1.4891 -0.0514  0.8831  0.1469 
 [1.9747] [1.9061]  [4.7102] [4.6645] 
50 -0.7269 -0.0053  0.3854  0.0107 
 [0.9268] [0.9104]  [2.8139] [2.8042] 
100 -0.2792 0.0035   -0.0223 0.0016 
 [0.4382] [0.4360]  [1.0186] [1.0199] 
200 -0.1312 0.0113   -0.0385 -0.0171     
 [0.2137] [0.2132]  [0.5105] [0.5106] 
 

(b) β1 = 1, β2 = -0.5 
 
10 -4.1469 0.0538   -0.9386 0.0582 
 [4.8242] [4.2403]  [10.9303] [10.3340] 
25 -1.5336 -0.0046  -0.2357 0.1412 
 [1.6930] [1.6184]  [4.7186] [4.6419] 
50 -0.7079 0.0161   -0.0695 0.0106 
 [0.8140] [0.7977]  [2.4986] [2.4819] 
100 -0.3646 -0.0007  -0.0301 0.0325 
 [0.4023] [0.3982]  [1.2859] [1.2832] 
200 -0.1764 0.0029   -0.0546 -0.0185 
 [0.2003] [0.1993]  [0.6744] [0.6739] 

 
 

5. Empirical Applications 
 

Although our primary objective in this paper is the derivation and evaluation of a simple 
bias correction formula for the MLE in the context of the Poisson regression model, we present 
results here that illustrate its usefulness in practice. These applications are not intended to be 
“full blown” empirical studies of the phenomena in question. Rather, they are intended to 
demonstrate the extent to which estimates based on actual data may change as a result of 
implementing our bias correction for this particular MLE. 
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Table II: Percentage biases and MSEs of the MLEs and bias-corrected MLEs – 
intercept and two regressors 

 
n )ˆ(% 1Bias  )

~
(% 1Bias  )ˆ(% 2Bias  )

~
(% 2Bias  )ˆ(% 3Bias  )

~
(% 3Bias  

[ )ˆ(% 1MSE ] [ )
~

(% 1MSE ] [ )ˆ(% 2MSE ] [ )
~

(% 2MSE ] [ )ˆ(% 3MSE ] [ )
~

(% 3MSE ] 
 
 

(a)  β1 = 1, β2 = 0.5, β3 = 0.5, ρ = 0.1 
 

10 -5.4984 -0.0506 -1.8594 0.0248  3.7403  0.1129 
 [7.6977] [6.8300] [5.7465] [5.5245] [17.5002] [16.6353] 
25 -1.9800 -0.0695 1.4561  0.0965  0.1200  0.0327 
 [2.3178] [2.1990] [5.6222] [5.4589] [2.8013] [2.7645] 
50 -0.9785 -0.0244 0.3678  0.0475  0.3463  -0.0076 
 [1.0203] [0.9980] [1.9837] [1.9766] [2.6724] [2.6769] 
100 -0.3575 -0.0041 0.0408  -0.0008 -0.0420 0.0040 
 [0.4692] [0.4660] [1.0499] [1.0491] [0.6926] [0.6921] 
200 -0.1705 0.0053  -0.0589 -0.0024 0.0075  -0.0214 
 [0.2221 [0.2213] [0.5039] [0.5052] [0.4687] [0.4690] 

 
(b)  β1 = 1, β2 = 0.5, β3 = 0.5, ρ = 0.9 

 
10 -4.6490 0.0068  -0.5608 -0.2005 3.4684  0.2322 
 [7.6072] [6.9995] [29.5010] [25.8512] [56.3052] [54.6193] 
25 -1.8510 -0.0604 2.5693  0.1463  -1.1418 -0.0510 
 [2.4696] [2.3565] [18.5975] [18.1754] [11.1513] [11.0251] 
50 -0.8136 -0.0023 0.2679  0.0137  0.1354  -0.0374 
 [1.0489] [1.0335] [8.1901] [8.1873] [9.5613] [9.5766] 
100 -0.2673 0.0191  0.0848  -0.0229 -0.0794 0.0002 
 [0.4627] [0.4605] [4.2837] [4.2821] [3.1600] [3.1581] 
200 -0.1407 -0.0038 -0.0563 0.0480  0.0545  -0.0401 

[0.2170] [0.2165] [2.2196] [2.2208] [2.1409] [2.1421] 
 

 
5.1 Supreme Court Judge Appointments 

We begin with a simple example that uses data on the number of U.S. Supreme Court 
judges appointed by U.S. Presidents, as reported by Voinov et al. (2010, Table 2). We use data 
only for those Presidents representing the Democrat or Republican parties, resulting in 38 
observations. The independence of the sample observations is confirmed by tests conducted by 
Voinov et al. (2010), who also show that a Poisson process cannot be rejected. The 
characteristics of our sample are as follows, and it can be seen that the sample data are equi-
dispersed:  
 
JUDGES: 0 1 2 3 4 5 6  Mean: 2.0 
Frequency: 6 7 14 5 4 1 1  Variance: 2.1 
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We have estimated a very simple Poisson regression that explains the number of 
appointments in terms of a constant a dummy variable, REP, which is unity if the President was 
a Republican, and zero if he was a Democrat. The results appear below (z-statistics are in 
parentheses; bias-adjusted estimates are in bold): 
 

E[JUDGES] = 0.5436 + 0.2893 REP ; R2 = 0.0411 
    (3.03)    (1.24) 
                                                0.5597    0.2840 
 
We see that there is no significant Republican-Democrat effect in the appointment of Supreme 
Court judges; and in this example the effect of bias-correcting the estimated coefficients is 
negligible, notwithstanding the modest sample size. 
 

5.2 Atlantic Hurricanes 
 Modeling and predicting the occurrence of hurricanes is of considerable economic importance. 
For example, in the case of Hurricane Katrina in 2005, the cost of property damage alone was 
estimated at $81 billion. The possible role of an El Niño effect on hurricane frequency has 
received considerable attention. It is believed that warm El Niño events are associated with an 
increase in the number of tropical storms and hurricanes in the eastern Pacific Ocean, and a 
decrease in the Atlantic Ocean, Gulf of Mexico and the Caribbean Sea. We have estimated a 
Poisson regression model for the number of North Atlantic hurricanes in the years 1990 to 2010. 
The data (Unisys 2011) have the following characteristics: 
 
HURRICANES: 3  4  5  6  7  8  9  10  11  12  15 Mean: 7.1 
Frequency:    3  4  1  1  1  4  3  1   1   1   1  Variance: 10.9 
 

The estimated Poisson regression model (with z-statistics in parentheses, and bias-
adjusted estimates in bold) is: 
 

E[HURRICANES] = 2.1178 – 0.8650 DMOD - 0.9138 DSTRONG  ;  R2 = 0.4208 
                                              (24.42)   (-2.23)                 (-2.79) 
                                               2.1215   -0.7973               -0.8675 
 
DMOD and DSTRONG are dummy variables with the value unity if the year was characterized 
by a moderate or strong El Niño effect (Null 2011) respectively, and zero otherwise. The results 
exhibit the anticipated negative El Niño effect, with the relative magnitudes of the dummy 
variable coefficients also being as expected. Bias-correcting these two estimated coefficients 
increases their values – by 7.8% and 5.1%, respectively. That is, the estimated impact of the El 
Niño effect is reduced somewhat. 
 

5.3 Banking Crises 
Finally, we apply our bias correction to a model for the number of banking crises in a 

sample of 32 IMF-member countries over the period 1970 to 1999. The data for the banking 
crises are from Ghosh et al. (2002). From the raw data we have constructed a data-set for the 
number of such crises, and other indicators, for each country. This is available on request. The 
variables used are the number of banking crises (BCRISES); the number of currency crises 
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(CCRISES); a dummy variable (DPEG) which is unity if there were one or more banking crises 
under a (de jure) pegged exchange rate regime; and a dummy variable (DINCHI) which is unity 
if the observation is for an upper or upper-middle income country. The characteristics of the 
sample are: 
 

 BCRISES:  0 1 2 3 Mean: 0.9 
 Frequency: 13 11 7 1 Variance: 0.8 

 
The Poisson regression results appear below (z-statistics are in parentheses; bias-adjusted 

estimates are in bold): 
  
E[BCRISES] = -0.7659 + 0.2561[CCRISES×DINCHI] + 0.8727 DPEG ;  R2 = 0.4454 

    (-2.45)     (2.00)            (2.15) 
    -0.6831    0.2875           0.7616 

 
We see that banking crises are significantly more prevalent under pegged exchange rates than 
under floating rates. (This also holds for all 167 IMF-member countries, in contrast to the 
descriptive results of Ghosh et al., 2002, p.169.) The marginal effect for DPEG dummy 
(averaged over the sample) is 0.788, from the MLE results, and 0.725 using the bias-corrected 
estimate. In this example, the bias adjustments modify the point estimates of the coefficients by 
10.8%, 12.3% and -12.7% respectively; and the marginal effect for the exchange rate dummy by 
-8.0%. We do not report results for the full sample of 167 observations, as for that sample size 
the bias correction effects are negligible (as would be anticipated from the results in section 4). 
 
 

6. Conclusions 
 

We have derived an analytic expression for the first-order bias of the MLE in the Poisson 
regression model. Almost-unbiased MLEs for the coefficients can then be constructed by 
subtracting the estimated biases from the original MLEs. We have presented Monte Carlo 
evidence that shows that this bias correction can result in substantial reductions in bias in small 
samples, and although it increases the variability of the estimators, the MSE is not adversely 
affected. We have also shown that there is no need to bias-correct the MLE for the Poisson 
regression model with samples of size 200 or more.  

This demonstrated robustness of the asymptotic properties of this MLE, to reductions in 
the sample size to quite modest levels, should be of considerable comfort to practitioners. The 
illustrative empirical examples that we have provided also show the extent to which point 
estimates of the parameters of a Poisson regression model may change as a result of using our 
bias correction in small samples. 
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