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Abstract 

The estimation of Value-at-Risk generally used models assuming independence. However, fi

�

nancial returns tend to 
occur in clusters with time dependency. In this paper we study the impact of negligence of returns dependency in 
market risk assessment. The main methods which take into account returns dependency to assess market risk are: 
Declustering, Extremal index and Time series-Extreme Value The- ory combination. Results shows an important 
reduction of the estimation error under dependency assumption. For real data, methods which take into account 
returns dependency have generally the best performances. 
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1. Introduction

The extreme value theory (EVT) and Pickands approximation give interesting results
concerning modeling and estimating �nancial extreme risk under the assumption of in-
dependence of �nancial returns. In reality, �nancial research shows that returns tend to
occur in clusters. Hence, it is interesting to identify the impact of negligence of returns
dependence on market risk estimation. Therefore, the purpose of this work is to use tech-
niques from EVT to estimate market risk under both independent (i.i.d) and dependent
�nancial returns assumptions. The methods based on EVT which measure the market risk
with the VaR (Value-at-Risk) are the following: Extremal index (Longin 2000), Declus-
tering (Hsing 1987) and Time series and EVT combination (Mc Neil and Frey 2000). In
all what follows; it is assumed that a �nancial asset is studied, its daily returns on a
period of n days are denoted Rt1 ;Rt2 ; ...;Rtn . VaR(α) denote the Value at Risk of this
asset at con�dence level 1−α with a predictible horizon of one day. VaR(α) is de�ned by
Pr(Rt+1 < −V aRt(α)/Ht) ≤ α. where Ht denotes all the information available at time t.

In this paper, we try to answer the following questions:
1- What is the impact of negligence of returns dependence on risk measurement?
2- How does wrong speci�cation of the model a�ect the measure of risk?
3- How do the main methods for assessing risk for dependent returns compare?
This paper is organized as follows; section 2 describes the methods taking into ac-

count dependence of extreme returns; in section 3 the methodology is presented with an
application to simulated and real data. In the last section we summarize our �ndings and
conclude.

2. Dependence modeling

In reality, �nancial returns often tend to occur in clusters, the i.i.d hypothesis in
�nancial data was widely criticized. The main methods taking into account the time
dependence of extreme �nancial returns are brie�y presented in this section. Those meth-
ods are Extremal index, Declustering and Time series-EVT combination. In this paper,
we model extremal risk in �nance with a special focus on portfolio losses. Therefore we
consider only observations lower than a given threshold. VaR is a used tool for assessing
�nancial market risk characterized by a level α and an horizon 1 day.

2.1 Extremal index

The extremal index is a quantity, presented in Leadbetter et al. (1983), characterizing
the relationship between the dependence structure of data and their extremal behavior.

De�nition 1. : Let (Rn)n≥0 be a strictly stationary sequence and F is the marginal dis-
tribution function,Mn is the maximum of R1, ..., Rn and θ a non negative number. Assume

that for every τ > 0 there exists a sequence (un) such that:

{
lim

n→+∞
[n(1− F (un))] = τ.

lim
n→+∞

[Pr(Mn ≤ un] = exp(−θτ).

Then θ is called the extremal index of the sequence (Rn)
n≥0
.

�
The extremal index should be in [0,1]: 0 ≤ θ ≤ 1. If θ = 1 �nancial returns are

independent, if θ = 0 �nancial returns are strongly dependent.
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The extremal index was interpreted according to di�erent viewpoints: the extremal
index was introduced by Longin (2000) in �nancial risk, Hsing, Husler and Leadbetter
(1988) showed that extremal index is a reciprocal of the mean cluster size. The Extremal
index estimator used in this article is the one proposed by Ferro and Segers (2003). The
estimation of the extremal index is introduced in the VaR in order to estimate the VaR
under dependence assumption with the following formula:

V aR(α) = µ+
ζ̂

σ̂
[1− (− lnαθ̂∗n))ζ̂ (1)

where (ζ̂ , σ̂) are the estimates of GPD parameters.

2.2 Declustering

In order to estimate the market risk of extreme value, it is necessary to model the
minima of returns under a speci�c threshold. Declustering method consists on dividing
data into clusters. Theorem 4.5 of Hsing (1987) shows that clusters of exceedance may
be considered asymptotically independent. Hence, the minimums of cluster are approxi-
mately i.i.d. The two classical methods used to identify clusters are the Blocks and Runs
methods (for details see Leadbetter et al. 1989).

2.3 Time series-EVT combination

Time series-EVT combination method was developed by Mc Neil and Frey (2000), they
suggest that the appropriate model of �nancial returns is a stationary one with stochastic
volatility, this implies the dependence in data is modeled by:

Rt = µ̂t + σ̂tZt (2)

where: µ̂t and σ̂t are deducted respectively from AR-ARMA and ARCH-GARCH
appropriate model and Zt is the residual of the time series.

The idea behind this method consists in eliminating dependence in data by time series.
Under i.i.d assumption of residuals we estimate VaR of residuals then the returns VaR is
computed (for more details see Mc Neil and Frey 2000).

VaR for real data was estimated by the model AR(1)-GARCH(1,1)-GPD with the
following formula: 

V aRα = µ̂t+1 + σ̂t+1V aRα(Z) (3)

V aRα(Z) = ϑ+ ξ̂
σ̂

[(
1−α

m
n

)−ξ̂
− 1

]
(4)


µ̂t+1 deducted by AR(1) model

σ̂t+1 deducted by GARCH(1, 1) model
Z residual i.i.d.

AR(1)-GARCH(1, 1) parameters are estimated using �QML� (Quasi-Maximum likeli-
hood) estimators. The GPD parameters are estimated with �PWM� (Probability Weighted
Moment) estimators proposed by Hosking et Wallis (1987).
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3. An application to simulated and real data

The main purpose of this empirical part is to detect the impact of negligence of re-
turns time dependence in market risk. Diebold (1996) suggested that simulation should
be used to test the pertinence of risk assessment methods based on extreme value theory.
Declustering, Extremal index and Time series-EVT combination are applied on simu-
lated data from random i.i.d variables for normal and Student distributions, dependent
data with AR(1) and ARMA(1,1) processes, Brownian geometrical motion with constant
volatility (BMCV) and Brownian geometrical motion with stochastic volatility (BMSV).
Those methods are also applied on real data.

3.1 Simulated data

In this subsection we present the procedure of VaR estimation and the calculation of
approximate real VaR for the simulated data according the following steps.
- First step: Data are simulated according to the following models: normal, Student
i.i.d observations, AR(1) and ARMA(1,1) process, Brownian motion with constant and
stochastic volatility. We simulate N data sets (N = 1000), every one is composed by n
(n = 1000) observations.
- Second step: Estimate the VaR(α) where (1−α) is equal to 99.9%; 99%; 97.5%; 95%;
90% under i.i.d and dependence assumptions.
- Third step: calculate the real VaR (or approximated real) denoted V aRr(α) as follows:

1- Normal return's V aRr(α) = Φ−1(α), where Φ−1 denotes reverse Normal distribution
function.

2- Student return's V aRr(α) = F−1
ν (α)

√
ν−2
ν
, where F−1

ν denotes reverse Student

distribution function and ν freedom degrees (ν = 6 is chosen here).
3- AR(1) return's such as AR(1): Rt = ϕRt−1 + ξt, the V aRr(α) ' Φ−1(α)

∑m−1
i=1 ϕ2i.

4- For ARMA(1, 1), BMCV and BMSV return's V aRr(α) are approximated according
simulation method by the following steps:

* We simulate N = 1000 data set containing n = 1000 observations.
* For every data set we consider only the last observation R1000, orders statistics of

these last observations are denoted: R
(1)
(1000) ≤ R

(2)
(1000) ≤ ... ≤ R

(1000)
(1000).

VaR(α) is then approximated by the empirical quantile of the previous order statistics.

V aRr(α) = R
(1000∗α)
(1000) .

- Fourth step: In order to determine the performance of each method we propose the
use of Percentage Absolute Relative Error (PARE) as a measure of di�erence between an
approximation of real VaR (V aRr) and estimated VaR (V aRe).

PARE = 100 ∗ 1
N

∑N
i=1 |

V aRei − V aRri
V aRri

| (5)

where V aRei is the estimation of V aR(α) and V aRri is an approximation of the real
V aR(α) related to simulated data set number i.

3.1.1 Results and interpretation

Table I of PARE shows that the i.i.d assumption gives a low PARE level for data
simulated according to i.i.d normal and student distributions. This result is predictable
because data here are simulated under i.i.d assumption. For example, for N(0.1) process
the amplitude of error is about 22.7% and 20% for t(6) process for α = 0.1%. When data
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α 0.1% 1% 2.5% 5% 10%
i.i.d N(0.1) 22.7% 31% 23.3% 48.9% 46.3%
i.i.d t(6) 20% 23.2% 27.5% 29.6% 23.5%
BMCV 96.6% 95.2% 93.5% 90.86% 84.4%
BMSV 98% 97% 96% 93% 88%
AR(1 ) 96.4% 81.49% 88.6% 102.5% 163.7%

ARMA(1,1) 95.5% 83.5% 83% 119% 185%

Table I: Estimated VaR inder independence for simulated data.

α 0.1% 1% 2.5% 5% 10%
i.i.d N(0.1) 129% 105.9% 112.6% 136.2% 109.9%
i.i.d t(6) 93% 97% 98.5% 100.8% 104.5%
BMCV 25% 23% 21% 27% 29%
BMSV 11% 18% 15% 20% 19%
AR(1 ) 26% 16% 10% 11% 15%

ARMA(1,1) 7.7% 13% 20.7% 10.4% 16.6%

Table II: Estimated VaR inder dependence assumption with declustring method for sim-
ulated data.

are simulated from BMCV, BMSV, AR(1) and ARMA(1,1) processes, the di�erences
between real and approximated VaR become very important when i.i.d based method is
used to estimate VaR. Relative errors may reach 185%. This results showed that i.i.d
hypothesis used for estimating VaR from dependent returns give generally huge errors.

Under the dependence assumption with Declustering method (see table 2), PARE
gives a high level for N(0.1) and t(6) process. PARE is respectively about 112.6% and
98.5% for α = 2.5% compared with 23.3% and 27.5% obtained with i.i.d method for
VaR estimation we remark that the dependence assumption gives an important value of
errors. However for dependent observations BMCV, BMSV, AR and ARMA process, for
α = 2.5% PARE is respectively about 11%, 15%, 10.1% and 20.7%. In general, PARE
is under 26% for all α levels. This result shows that dependence assumption must be
considered when we estimate extreme �nancial risk.

Under the dependence assumption with Time series-EVT combination method (see
table III), we remark the same results. PARE is lower than 50% for dependent data and
higher than 92% for independent ones.

Under the dependence assumption with Extremal index method (see table IV), we
remark the same results. PARE is lower than 30% for dependent data and higher than
80% for independent ones.

The i.i.d assumption gives a best VaR estimation according to i.i.d simulated data,
the dependence assumption gives a best VaR estimation with Declustering and extremal
index method. Therefore we must use a test of independance like Sprearman test in order
to use the appropriate method and allocate the appropriate capital to cover the �nancial
risk.

Table V summarizes the best method. We remark that i.i.d assumption is the best
method for i.i.d data, for BMCV and BMSV extremal index and Declustring are the best
one and for AR(1) and ARMA(1,1) process Time series-EVT combination was absent in
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α 0.1% 1% 2.5% 5% 10%
i.i.d N(0.1) 99.3% 105.3% 98.3% 92.2% 93%
i.i.d t(6) 97.2% 95.2% 102.3% 98.2% 95.3%
BMCV 36.2% 35% 31.2% 34.9% 33.4%
BMSV 39% 37.5% 33.4% 34.2% 35.1%
AR(1 ) 41.2% 22.9% 28.5% 28.9% 39%

ARMA(1,1) 53.7% 52.9% 44.3% 27.9% 32%

Table III: Estimated VaR inder dependence assumption with Time series-EVT combina-
tion method for simulated data.

α 0.1% 1% 2.5% 5% 10%
i.i.d N(0.1) 105.6% 125.4% 148.8% 107.3% 127.6%
i.i.d t(6) 87% 83% 81% 80% 84%
BMCV 25% 22% 21% 18% 12%
BMSV 23% 21% 20% 18% 15%
AR(1 ) 17.2% 9.8% 30.4% 25.4% 39%

ARMA(1,1) 22% 28% 18% 20.5% 30%

Table IV: Estimated VaR inder dependence assumption with extremal index method for
simulated data.

α 0.1% 1% 2.5% 5% 10%
i.i.d N(0.1) i.i.d i.i.d i.i.d i.i.d i.i.d
i.i.d t(6) i.i.d i.i.d i.i.d i.i.d i.i.d
BMCV decl/ex-ind ex-ind decl/ex-ind ex-ind ex-ind
BMSV decl decl decl decl ex-ind
AR(1 ) ex-ind ex-ind decl ex-ind decl

ARMA(1,1) decl decl ex-ind ex-ind decl

Table V: Best VaR method for simulated data.
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this table.

3.2 Real data

In order to estimate market risk we chose to apply these methods to Tunisian Stock
Exchange index (Tunindex) data during the period from January �rst, 1998 to September
31, 2002, French CAC40 index during the period from January 22, 2000 to July 2, 2006,
SP500 index during the period from January 06, 2000 to February, 25, 2006 and NASDAQ
index during the period from july 03, 1999 to January, 7, 2006. The daily returns are
de�ned as Ri = ln( Xi

Xi−1
) ∗ 100, where Xi is the daily closing value on day i.

According to these index, Jarque Berra test shows that the daily �nancial returns are
far from normality. Based on Kurtosis estimates we argue that returns distribution are
fat-tailed.

For real data we are faced to a problem of estimating real VaR. In order to measure
the performance of each method. Therefore we adopt a sliding window with a size of 1000
observations. The relative performance of each model is summarized by a "Violation
Ratio" denoted by (VR). A Violation occurs if the realized return is smaller than the
estimated VaR in a giving day. The Violation Ratio is de�ned as the total number of
violations, divided by the total number of one step a head forecasts (Gençay and Selçuk
2002).

� If V R > α =⇒underestimation of the risk.
� If V R < α =⇒ overestimation of the risk.
� If V R = α =⇒ appropriate model for the risk estimation.

3.2.1 Results and interpretation

Violation Ratio of extreme �nancial risk for Tunindex, CAC40, SP500 and NASDAQ
index are presented respectively in tables VI, VII, VIII and IX. Violation Ratio values
should be compared to α. For Tunindex when VaR is estimated under i.i.d assumption
Violation Ratio (VR) is Higher than α, for example for α = 1%, V R = 5.2%. However,
under dependence assumption VR is approximately equal to α for example with Declus-
tering method when α = 1%, V R = 1.6% . When comparing α with VR we remark that
Time series-EVT combination is the best method.

For CAC40 index when VaR is estimated under i.i.d assumption Violation Ratio (VR)
is Higher than α level, for example for α = 0.1%, V R = 2.3%. However, under dependence
assumption VR is approximately equal to α .When comparing α with VR we remark that
Declustering method is the best method.

For SP500 NASDAQ index when VaR is estimated under i.i.d assumption Violation
Ratio (VR) is higher than α level, for all α values. However, under dependence assumption
VR is approximately equal to α. When comparing α with VR we remark that Time series-
EVT combination is the best method.

The most important result (presented in table X) is that the dependence assumption
reduces the di�erence between real and estimated VaR. This shows that the negligence
of dependence on extreme risk market estimation a�ects �nancial risk estimation. This
work showed that the model AR(1)-GARCH(1,1)-GPD is the most appropriate pattern
for modeling extreme market risk. This method combines econometric models of volatility
and extreme value models; it takes into account the time dependence and detects extreme
events.
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α 0.1% 1% 2.5% 5% 10%
i.i.d 7.4% 5.2% 7.3% 9.9% 13.4%

Declustering 0.6% 1.6% 3.2% 5.7% 10.9%
Extremal index 0.8% 2.8% 3.4% 7.8% 11.1%

Time-series EVT combination 0.12% 1.5% 4.1% 6.1% 10.6%

Table VI: Violation Ratio for Tunindex data. Note : The bold number present the best
VR value according these methods for every α

α 0.1% 1% 2.5% 5% 10%
i.i.d 2.3% 7.2% 5.9% 8.7% 14.1%

Declustering 0.3% 1.3% 3.9% 5.3% 10.4%
Extremal index 0.4% 2.2% 3.2% 6.2% 10.2%

Time-series EVT combination 0.3% 1.4% 3.3% 5.3% 10.3%

Table VII: Violation Ratio for CAC40 data. Note : The bold number present the best VR
value according these methods for every α

α 0.1% 1% 2.5% 5% 10%
i.i.d 12.2% 10.5% 9.4% 10.7% 14.6%

Declustering 4.6% 6.5% 3.2% 7.5% 9.1%
Extremal index 1.8% 2% 4.2% 9.7% 10.1%

Time-series EVT combination 2.12% 1.5% 3.2% 5.1% 8.65%

Table VIII: Violation Ratio for SP500 data. Note : The bold number present the best VR
value according these methods for every α

α 0.1% 1% 2.5% 5% 10%
i.i.d 10.7% 15.2% 16.23% 19% 14.1%

Declustering 0.6% 6.1% 2.2% 4.1% 9.6%

Extremal index 0.5% 1.4% 2.2% 3.1% 9.1%
Time-series EVT combination 0.10% 1.2% 3.1% 3.4% 9.6%

Table IX: Violation Ratio for NASDAQ data. Note : The bold number present the best
VR value according these methods for every α

α 0.1% 1% 2.5% 5% 10%
Tunindex Time-series Time-series decl decl Time-series
CAC40 decl/Time-series decl ex-ind decl/Time-series ex-ind
SP500 ex-ind Time-series decl/Time-series Time-series ex-ind

NASDAQ Time-series Time-series ex-ind/decl decl decl/Time-series

Table X: Best VaR method for real data.
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4. Conclusion

In this paper, it has been shown that methods which take into account dependency
have an impact in market risk estimation by VaR. Under i.i.d assumption there is a
huge di�erence between real and estimated VaR. However, under dependence assumption
Time-series EVT combination, Declustering and extremal index methods are the best.
The AR(1)-GARCH (1,1)-GPD is the most appropriate pattern for modeling extreme
market risk.

For the simulated data, the amplitude of error is about 280% for BMCV with α = 0.1%,
this error induces an allocation of high amount of capital to cover a low level of risk.
According to real data VR shows that in general time series-EVT combination method is
the best. There fore wesuggest that practitioners must test the independence of extreme
returns to have an idea of the used hypothesis. Under dependence assumption there is
not a clear method to adopt but when we use a Time series-EVT combination we must
take care when chosing of the adequate model. This error induces an allocation of high
amount of capital to cover a low level of risk
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