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1. Introduction 

With the assumptions of market efficiency, rational expectation and risk neutrality, the 

forward rate unbiasedness hypothesis states that the forward rate should be an unbiased 

forecaster for the future spot rate. The empirical testing for the validity of the hypothesis 

usually involves the differences regression: 

  ,t l t t l t t lf             (1) 

where 
t  and ft,l denote the log of the spot and forward exchange rates at time t and l is the 

length of forward contract. ,t l tf   is the forward discount, which equals the interest rate 

differential based on the covered interest parity. Under the null hypothesis of unbiasedness 

such that 0,  1,  and ( ) 0t t lE      , it is expected that the estimate of   should equal 

to unity. However, the empirical consensus is that the estimate of   is significantly negative 

and the unbiasedness hypothesis is strongly rejected. The negative estimate is known as the 

forward discount anomaly.
1
 

The forward discount anomaly has puzzled researchers for a long time. The literature 

provides four possible explanations: (1) the time-varying risk premium, (2) the peso problem, 

(3) the irrational expectation and the speculative bubble, and (4) the international market 

friction and inefficiency. However, recent studies suggest that the anomaly is exaggerated 

because of improper treatments of the forward discount regression. For example, Baillie and 

Bollerslev (2000) suggest that long memory process of forward discount could explain the 

anomaly. Sakoulis et al. (2010), hereafter SZC, argue that the structural change process, 

instead of long memory process, accounts for the overstated forward discount anomaly. SZC 

use a stochastic multiple break model, proposed by Bai and Perron (1998, 2003), to test the 

forward rate unbiasedness hypothesis and find that the forward discounts for the G-7 

countries tend to be less persistent when they allow for structural change in the mean of the 

process.  

However, SZC only investigate structural breaks in mean, taking no account for 

possible structural changes in volatility. Considering both potential structural breaks in mean 

and volatility, we use a Bayesian approach with the Gibbs-sampling algorithm to reexamine 

the empirical findings of SZC. The Bayesian methodology is different from the classical 

methodology used in SZC and has several advantages. First, the Bayesian inference allows 

for non-nested model comparison and selection that determines the optimal number and form 

of structural changes. Second, the Bayesian approach simplifies complicated estimations and 

inference procedures in multiple structural change models and allows for finite-sample 

                                                 
1
 See Hodrick (1987), Engle (1996), Baillie and Bollerslev (2000) and Sarno (2005) for a comprehensive survey 

of the literature. 
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inferences. Finally, the Bayesian methodology incorporates model and parameter uncertainty.  

The remainder of the paper is organized as follows. Section 2 displays the model. 

Section 3 reviews the Bayesian methodology. Section 4 provides empirical findings. Section 

5 concludes. 

 

2. Model 

Following Zivot (2000) and SZC, we model the series of the forward discount, yt, as an 

AR(1) process implied by a Vector Error Correction Model (VECM): 

1t t t t ty a y s u                 (2) 

| ~  (0,1)      for 1,2, ,t tu iid N t T   

where t denotes all available information up to time t. We assume that the mean/level, at, 

and volatility, st, parameters are subject to m < T structural changes. The corresponding break 

dates are denoted by k1, k2,..., km such that 1 < k1 < k2 < ... < km ≤ T giving m+1 possible 

regimes in T observations. For each regime i (i=1,…,m+1) the parameters at and st are given 

by the values αi and σi for ki-1 ≤ t < ki with k0 = 1 and km+1 = T+1. The AR parameters   are 

assumed to be identical across regimes.  

We consider two models. The first is a more general model, called Design I, which 

allows for unrestricted structural changes in level and volatility such that t ia   and 

t is   for i=1,…,m+1. The second model, Design II, only allows for structural changes in 

level, holding the volatility constant across regimes, so that (2) becomes: 

1    1,2, ,t t t ty a y u t T                (3) 

Letting 
iEI denote an indicator/state variable for the event 1{ }i i iE k t k   , Equations 

(2) and (3) can be expressed as the linear regression: 

t t t ty x s u B                (4) 

where  

1 1 1

1 1
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The (3m+3) × 1 vector of unknown parameters is denoted  , ,   θ B σ k . Given the 

normality assumption and the observed data  1, , Ty yY , the likelihood function of (4) 
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3. Bayesian Inference 

 In this section, we illustrate the Bayesian framework with the Gibbs-sampling algorithm 

developed by Wang and Zivot (2000) and Chen and Zivot (2010). 

 

3.1. Prior specification 

We assume that the vectors k, B and σ
2 

are mutually independent and that the elements 

of σ
2
 are independent. For the specification of the prior beliefs about unknown parameters, 

we use proper priors for k, B and σ
2
. The break points, k, are assumed to follow a discrete 

uniform distribution over all ordered subsequences of (2,3,...,T) of length of m. This is a 

diffuse prior which does not impose any information about the location of the break dates. 

With regard to the remaining parameters, we employ natural conjugate priors. The prior 

distribution of B in equation (4) is given by a multivariate normal (MVN) distribution, 

),(~ 0 BMVN ΣBB , where B0 and ΣB are the prior mean and prior covariance matrix of B, 

respectively. The prior for σ
2
 specifies that each element follows an independent inverted 

Gamma (IG) distribution. That is, for each regime i (i = 1,..., m+1), ),(~ 00

2  vIGi . To 

represent a diffuse prior, we set B0 = 0, ν0 = 1.001, δ0 = .001, and ΣB equal to a diagonal 

matrix with each diagonal element equal to 1,000. 

 

3.2. Gibbs-sampling algorithm 

The posterior distributions of the parameters are derived using the Gibbs sampler 

(Geman and Geman 1984; Gelfand and Smith 1990; Gelfand et al. 1990; Casella and George 

1992; Gelman et al. 1995; Chib and Greenberg 1996). The basic principle of the Gibbs 

sampler is to approximate the joint and marginal posterior distributions by sampling from 

conditional distributions. Given the full conditionals ( | , )i if   Y , where θ-i denotes the 

vector of θ excluding the element θi, the Gibbs-sampling algorithm allows us to draw samples 

of θ iteratively from the full conditional densities. After sufficient iteration, the draws of these 

random variables will converge to the target posterior distribution ( | )f θ Y , and the marginal 

distribution of θi can be approximated by the empirical distribution of the draws. 

Before proceeding with the Gibbs sampler, we first describe the full conditionals of the 

unknown parameters. For a given break date, ki, the sample space only depends on the 

neighboring break points ki-1 and ki+1. Accordingly, the posterior conditional density of ki is of 

the form: 

1 1( | , ) ( | , , , , )
ii k i i if k f k k k  Y B σ Y           (6) 

where i = 1,..., m. The breakpoint ki can be drawn from a multinomial distribution with a 

sample size parameter equal to the number of dates between ki-1 and ki+1 and probability 

parameter proportional to the likelihood function. For the posterior conditional distribution of 
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B, the normal prior for B combined with the normal likelihood of (5) yields a MVN 

conditional posterior: 

 | , ~ ,MVN 
B B

B Y B             (7) 

where  1 2

0

    
BB

B B X S Y  and  
1

1 2


    BB
X S X . Here, S is a diagonal matrix 

with (s1,...,sT) along the diagonal. Finally, with the natural conjugate IG prior for 2

i  and the 

normal likelihood (5), the posterior conditional for 2

i also follows an IG distribution: 

2

2 | , ~ ( , )
i

i i iIG


   


Y              (8) 

where 0 2i in   , ni represents the number of observations in regime i, 

   0

1

2

i i i i

i  
   Y X B Y X B , Y

i
 is the vector of yt values and X

i
 is the matrix of xt 

values in regime i. 

Given the full conditionals (6)-(8), the Gibbs-sampling algorithm can be iterated J times 

to obtain a vector sample of size J such that  ( ) ( ) ( ) ( ), ,j j j jθ k B σ , j = 1,..., J.
2
  

 

3.3. Posterior estimation 

In order to generate the simulated draws from the Gibbs sampler, we use the method of 

the MCMC algorithm suggested by Geyer (1992). Specifically, given N = n0 + n1 iterations in 

the Markov chain, we only keep n1 simulated samples for further inference by discarding the 

first n0 sample as a burn-in. However, the output of the Gibbs sampler is a dependent 

sequence of parameter values forming a Markov chain. As a result, the series is serially 

correlated but stationary and ergodic. Then given ),,,(
)()2()1( 1n

iii    post-convergent sample 

draws, the sample mean of these values can be used to estimate the posterior mean:  

1

( )

11

1
n

j

i i

jn
 



                (9) 

In addition, the Newey-West covariance matrix estimator that is consistent in the 

presence of both heteroskedasticity and autocorrelation:  

0

1

2 1
1

q

j

j

j

q

 
    

 
                 (10) 

where j  is the jth-order sample autocovariance of θi from n1 simulated draws and q is an 

                                                 
2
 Details of the Gibbs sampler for the structural break models are described in Wang and Zivot (2000). The C 

and Gauss codes for implementing Gibbs sampler were kindly provided by Jiahui Wang and Eric Zivot. 
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integer of the truncation lag such that q = 4(n1 / 100)
1/4

, can be used to estimate the variance 

of the posterior mean. 

 

3.4. Model selection 

The Bayesian framework provides a natural way of determining the number and form of 

structural breaks as a model selection problem.
3
 We use Schwarz’s Bayes information 

criterion (BIC) to select the best structural change model for the aggregate output series. The 

BIC for a model with m breaks is defined as: 

ˆBIC( ) 2 ln ( | ) ln( )m L T  θ Y              (11) 

where the likelihood function of L(|) is equation (5) evaluated at the posterior mean of θ 

based on the output of the Gibbs sampler, λ denotes the number of estimated parameters in 

model with m structural breaks, and T denotes the effective number of observations. By the 

definition of (11), the model with the highest posterior probability has the largest BIC value. 

 

3.5. Comparison with classical approach 

In contrast to our Bayesian approach, Bai and Perron (1998, 2003) consider the classical 

estimation of multiple structural changes in a linear model like (4) with a fixed number of 

breaks m, separated by a minimum number of observations, by global minimization of the 

sum of squared residuals. They do not estimate regime specific error variances but they can 

allow for general forms of serial correlation and conditional heteroskedasticity in the error 

terms. To determine the number of breaks, they consider a test of the null hypothesis of no 

break versus the alternative hypothesis of some unknown number of breaks between 1 and 

some upper bound M. Their tests, called double maximum tests, are based on the maximum 

of the (possibly weighted) individual tests for the null of no break versus m breaks (m = 1,..., 

M). The double maximum tests are particularly useful to determine whether some structural 

change is present since a sequential testing procedure can be unreliable for particular forms of 

multiple changes (see Bai and Perron, 2006). They also consider the use of model selection 

criteria to determine the number of breaks. 

The asymptotic theory used in Bai and Perron (1998) assumes non-trending data and 

needs to be modified for trending data. While Bai and Perron (1998) consider the case of 

constant volatility, Bai (2000) advances the theory to allow for the breaks in the variance of 

the error term. For inference on the break dates, the asymptotic theory assumes that the 

magnitudes of the structural changes in the parameters shrink as the sample size increases and 

                                                 
3
 Wang and Zivot (2000) used several model selection criteria to determine the number and type of structural 

changes. Specifically, they used marginal likelihoods, posterior odds ratios and Schwarz’s Bayes information 

criterion (BIC) to select the model with the most appropriate pattern of structural breaks that best describes the 

data-generating process of the series. Based on a set of Monte Carlo experiments they found that model 

selection based on the BIC performed the best. 
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can give perverse results for large parameter shifts. In contrast, inference using the Bayesian 

methodology is the same for trending and non-trending data and for any magnitude of 

structural changes on the parameters. For model selection, both the Bayesian and classical 

methodologies treat the number of breaks as unknown.  

The classical least-squares and Bayesian estimation with a uniform prior on the break 

dates lead to similar results for the location of structural changepoints and point estimates for 

the regression coefficients for Design II. The least-squares estimation of the coefficients 

conditions on the least-squares estimates of the break dates. This approach is asymptotically 

justified as the break fractions converge faster than the regression coefficients. In particular, 

with a short time series, the inferences about the location of the break dates are subject to 

considerable uncertainty. Bayesian inference accounts for this uncertainty by integrating over, 

rather than conditioning on the break dates. In this case, Bayesian standard errors for 

coefficients are likely to be larger than the least-squares ones because the Bayesian inferences 

explicitly account for parameter uncertainty. 

 

4. Empirical Findings 

We use the log spot and 1-month log forward exchange rates compiled by SZC.
4
 The 

exchange rates are end-of-month national currency units per US dollar quoted by the 

arithmetic average of the bid and ask rates for six G-7 countries (Canada, France, Germany, 

Italy, and U.K.) ranging from 1976:01 to 1998:12 and for Japan from 1978:07. The log values 

of the forward discount have been multiplied by 100 and therefore approximate to percentage 

differences. Figure 1 plots the forward discount, ,t l tf  , for all the currencies. It is clear to 

see that the forward discount is much more volatile during the period of the 1970s and 1980s 

compared to the 1990s. In particular, there appear to be regime shifts in the forward discount 

across the sample. Table 1 gives the summary statistics of the data. The noted observations of 

the forward discount, such as skewness, leptokurtosis, and significant Bera-Jarque statistics, 

are present in the data. 

Table 2 reports posterior estimates without accounting for structural change. Most of the 

exchange rates are significantly persistent with the AR term above 0.8, while the French franc 

(0.699) and Italian lira (0.798) are relatively less persistent. Tables 3 and 4 present the results 

which consider structural breaks in the forward discount. In order to determine the number 

and pattern of structural breaks, we estimate the models of Design I and II with m breaks (m 

= 0,1,…,5) and then choose the model that maximizes the BIC. Inferences are based on 2,000 

draws of Gibbs sampler after dropping the first 500 simulations as the burn-in period. Taking 

the Canadian dollar as an example, the Design I model with 4 breaks has the highest BIC 

value at 617, while the BIC for Design II with 4 breaks is 517, which is substantially lower 

                                                 
4
 The authors thank Eric Zivot for generously providing the data. 
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than those with any number of breaks in Design I. Table 3 shows that Design I is superior to 

Design II in the model fitting. By and large, our model selects fewer break points than those 

in SZC. For example, while SZC suggests 5 breaks for the German mark, our approach 

indicates 2 breaks.  

Table 4 displays the Bayesian estimations of Design I based on the preferred model 

suggested in Table 3. The upper panel of the table presents a 95% highest posterior density 

(HPD) region of structural change with the posterior mode for the break years in bold. The 

lower panel shows the posterior means of the estimated parameters followed by the standard 

deviations associated with the estimates and the 2.5% and 97.5% posterior quantiles of the 

parameters. Note that the AR(1) terms for all of the G-7 countries become significantly larger, 

ranging between 0.84 to 0.96, than those in Table 2. That said, the presence of structural 

breaks makes the forward discount more persistent, opposing the less persistent evidence as 

observed by SZC. For example, the AR coefficient for the Italian lira is 0.798 in Table 2 but 

is 0.929 in Table 4. Our evidence rebukes the prior findings in SZC that allowing structural 

breaks in the forward discount can explain away the high prescience. 

Table 5 compares the timing of breaks obtained by our Bayesian method and SZC. In the 

SZC study, the Sterling crisis of 1976 and the establishment of the European Monetary 

System (EMS) of 1979 were the major events that caused the breaks for most of the G-7 

countries. In our results, most G-7 countries have been affected by the spillovers of the US 

economic downturn, including Canada (1983:08), France (1981:05 and 1983:05), Italy 

(1983:05) and Japan (1982:10). The burst of the EMS crisis has a significant impact on the 

European countries, such as France (1991:12), Germany (1993:07), Italy (1993:04) and the 

UK (1993:02). Only Canada has the break in the late 1970s that may be justified by the 

weakness of the Canadian dollar due to the political uncertainty, imminent inflationary 

pressure and the current account deficit. The steady decline of the Canadian dollar beginning 

in 1992 reflects the expansionary monetary policy and large current account deficits (Powell, 

2005). Other breaks are consistent with SZC.  

In our study, we do not require breaks to be separated by at least five years in the search 

for potential break dates, and we allow for the possibility that an outlier observation can be 

detected. For example, we find outlier observations for Canada in the second half of 1992. 

Past studies have documented volatility changes in exchange rate series and have shown that 

changes in exchange rate volatility can be confused with changes in level. As a result, using 

Design II could produce misleading inferences. This is most evident in the two-break models 

for the German mark, the Italian lira and the British pound. Design I detects breaks in both 

level and variance after the establishment of the EMS (1987:03, 1983:05 and 1985:04, 

respectively). In contrast, Design II translates the variance breaks into larger mean changes 

after 1977 as in SZC. In this case, Design I implies similar means across regimes, whereas 

Design II shows distinct forward discount dynamics in which a higher implied mean of the 

1814
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exchange rate was followed by a big decline in the forward discount.  

Finally, Figures 2(a)-(f) plot the marginal posterior distributions of the break dates with 

the forward discount series superimposed. For instance, in Figure 2(d) for the Italia lira, the 

two structural breaks most likely occurred in 1983:05 and in 1993:04 with the highest 

posterior probability being around 0.58 and 0.22, respectively. The first break date is very 

precisely estimated with only k1=1983:03 and k1=1983:11 contained in a 95% HPD region.  

 

5. Conclusions 

Using Bayesian methods, we search for the most appropriate structural break 

specification to model the changes in the processes of G-7 countries for 20 years of monthly 

spot and forward exchange rate data. We find that the US recession and the EMS crisis have 

played a crucial role in explaining the breaks in the forward discount process. We find 

evidence that the forward discounts have experienced breaks in variance. Our posterior 

estimates indicate that the forward discount remains highly persistent even after accounting 

for structural change. Our findings cast doubt on the proposition by SZC that the existence of 

structural change is a viable justification for the forward discount anomaly. 
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Table 1. Summary statistics for the forward discount 

 German Mark French Franc Italian Lira Canadian Dollar British Pound Japanese Yen 

 Mean -0.163  0.176  0.501  0.114  0.216 -0.296 

 Median -0.192  0.138  0.413  0.109  0.187 -0.294 

 Std. Dev.  0.279  0.331  0.433  0.163  0.260  0.259 

 Skewness  0.589  1.203  2.052 -0.208  0.324 -0.388 

 Kurtosis  3.630  7.120  9.027  3.277  4.654  3.527 

 J-B  20.52
*
  261.76

*
  611.51

*
  2.88  36.28

*
  9.07

*
 

Note: the sample period for the monthly forward discount runs from 1976:01 to 1998:12, except for Japanese yen from 1978:07. 

J-B is the Jarque–Bera test for normality. 
*
 indicates significance at the 5% level. 
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Table 2. Posterior estimates of the AR(1) specification of the forward discount 

 Canada France Germany Italy Japan U.K. 

α .017 

(.006) 

[.004, .030] 

.052 

(.016) 

[.019, .084] 

-.010 

(.007) 

[-.023, .003] 

.099 

(.024) 

[.051, .146] 

-.021 

(.009) 

[-.039, -.002] 

.019 

(.009) 

[.002, .036] 

σ .088 

(.004) 

[.081, .095] 

.238 

(.010) 

[.219, .259] 

.096 

(.004) 

[.088, .104] 

.264 

(.011) 

[.242, .287] 

.096 

(.004) 

[.088, .105] 

.109 

(.005) 

[.100, .119] 

φ .841 

(.030) 

[.780, .905] 

.699 

(.041) 

[.617, .784] 

.940 

(.019) 

[.900, .980] 

.798 

(.035) 

[.728, .870] 

.929 

(.022) 

[.884, .975] 

.908 

(.024) 

[.860, .958] 

LLK 277.01 2.03 251.94 -26.07 225.96 216.83 

Note: the numbers in parentheses denote standard errors; those in square brackets are the 95% highest posterior 

density (HPD) regions. 
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Table 3. Choice of the number of breaks for the forward discount by BIC 

 Canada France Germany Italy Japan U.K. 

Design I II I II I II I II I II I II 

m=0 537.170  -12.793  487.035  -68.995  435.411  416.812  

m=1 598.776 526.421 197.714 -21.806 647.932 476.715 224.826 -50.132 582.984 425.011 585.129 409.928 

m=2 602.452 516.599 273.169 -6.908 660.003 493.777 261.547 -58.242 580.004 448.970 604.042 415.037 

m=3 603.708 525.579 321.051 -3.332 657.814 465.326 256.076 -45.265 570.460 436.043 598.815 408.948 

m=4 617.187 517.377 303.912 0.015 656.111 474.784 248.662 -67.909 566.213 465.659 579.523 398.593 

m=5 614.351 516.136 324.085 39.847 642.452 491.239 254.548 -55.205 555.835 451.914 575.640 402.889 

Number of breaks 4 

(3) 

5 

(4) 

2 

(5) 

2 

(4) 

1 

(0) 

2 

(5) 

Note: m denotes the number of breaks in the model. The Schwarz’s BIC is calculated by 2*LLK- *log(T) where LLK is the marginal likelihood value evaluated at the 

posterior mean of the parameter,  is the number of parameters with m structural breaks and T is the number of observations. Thus, we choose the model that maximizes the 

BIC value. The maximum BIC value is highlighted in bold. The numbers in the parentheses denote the choice of breaks used in Sakoulis, Zivot and Choi (2010). 
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Table 4. Final structural break model results for the forward discount 

 Canada France Germany Italy Japan U.K. 

Trend Breaks: 

k1 
[76:08, 

78:02, 80:05] 

[80:01, 

81:05, 81:09] 

[87:02, 

87:03, 89:03] 

[83:03, 

83:05, 83:11] 

[82:02, 

82:10, 83:07] 

[84:09, 

85:04, 86:01] 

k2 
[82:02, 

83:08, 84:03] 

[83:03, 

83:05, 83:09] 

[92:09, 

93:07, 96:09] 

[92:09, 

93:04, 94:01] 
 

[92:09, 

93:02, 94:05] 

k3 
[92:06, 

92:10, 92:10] 

[86:06, 

86:06, 87:10] 
    

k4 
[92:11, 

92:11, 93:02 

[90:07, 

91:12, 92:10] 
    

k5  
[95:12, 

96:05, 96:09] 
    

Coefficients: 

α1 

.022 

(.028) 

[-.010, .064] 

.015 

(.028) 

[-.033, .066] 

-.013 

(.014) 

[-.038, .011] 

.055 

(.053) 

[-.050, .153] 

-.023 

(.027) 

[-.080, .032] 

.012 

(.019) 

[-.026, .048] 

σ1 

.060 

(.033) 

[.037, .098] 

.183 

(.021) 

[.151, .221] 

.132 

(.009) 

[.116, .149] 

.462 

(.035) 

[.398, .537] 

.185 

(.020) 

[.153, .226] 

.171 

(.035) 

[.143, .210] 

α2 

.008 

(.024) 

[-.036, .055] 

.105 

(.163) 

[-.181, .386] 

.009 

(.010) 

[-.003, .021] 

.033 

(.015) 

[.005, .060] 

-.011 

(.006) 

[-.023, .000] 

.031 

(.023) 

[.007, .057] 

σ2 

.153 

(.047) 

[.117, .210] 

.689 

(.125) 

[.521, .933] 

.044 

(.005) 

[.037, .053] 

.105 

(.009) 

[.092, .120] 

.052 

(.003) 

[.047, .058] 

.061 

(.019) 

[.049, .077] 

α3 

.023 

(.008) 

[.009, .038] 

.031 

(.032) 

[-.020, .079] 

-.010 

(.005) 

[-.017, -.001] 

.007 

(.009) 

[-.008, .024] 

 

.008 

(.005) 

[-.001, .017] 

σ3 

.056 

(.012) 

[.041, .066] 

.136 

(.019) 

[.108, .173] 

.023 

(.006) 

[.017, .029] 

.044 

(.004) 

[.037, .053] 

 

.028 

(.007) 

[.020, .034] 

α4 

.350 

(.172) 

[.122, .485] 

.022 

(.010) 

[.005, .040] 

    

σ4 

.058 

(.152) 

[.017, .215] 

.054 

(.006) 

[.045, .066] 

    

α5 

-.003 

(.005) 

[-.013, .007] 

.040 

(.046) 

[-.016, .095] 

    

σ5 

.043 

(.004) 

[.037, .051] 

.134 

(.017) 

[.109, .165] 

    

α6  

-.029 

(.017) 

[-.048, -.011] 

    

σ6  

.020 

(.004) 

[.015, .026] 

    

φ 

.877 

(.027) 

[.824, .928] 

.842 

(.090) 

[.745, .934] 

.961 

(.021) 

[.930. .990] 

.929 

(.026) 

[.883, .974] 

.952 

(.021) 

[.913, .991] 

.910 

(.044) 

[.855, .963] 

Note: the numbers in parentheses denote standard errors; those in square brackets are the 95% highest 

posterior density (HPD) regions with mode in bold for the break years for each country. 
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Table 5. Summary of break dates for the forward discount 

Country k1 k2 k3 k4 k5 

Canada 
78:02 

(77:01) 

83:08 

(80:10) 

92:10 

(95:10) 

92:11 

 
 

France 
81:05 

(78:01) 

83:05 

(81:03) 

96:06 

(83:01) 

91:12 

(95:09) 

96:5 

 

Germany 
87:03 

(77:05) 

93:07 

(84:08) 

 

(89:05) 

 

(90:11) 

 

(94:01) 

Italy 
83:05 

(77:01) 

93:04 

(81:04) 

 

(82:11) 

 

(96:04) 
 

Japan 
82:10 

(—) 

   
 

U.K. 
85:04 

(77:01) 

93:02 

(80:06) 

 

(81:07) 

 

(84:08) 

 

(92:08) 

Note: Designs I and II refer to equations (1) and (2), respectively. k denotes the time of break over 

1976:01~1998:12, or 1978:07~1998:12 for Japan. The dates given in the parentheses are the estimated 

break dates in Sakoulis et al. (2010) in which they do not find any significant break for the Japanese 

yen. 
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Fig. 1. Forward Discount for G7 Countries

Source: Sakoulis, Zivot and Choi (2010).
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Fig. 2(a). Canada
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Fig. 2(b). France
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Fig. 2(c). Germany
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Fig. 2(d). Italy
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Fig. 2(e). Japan
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Fig. 2(f). UK
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