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1. Introduction 

 

The oil price shocks can be a major source of macroeconomic variability. Therefore,  

modelling and forecasting volatility of oil price is a high research topic. The fundamentals 

(supply and demand) can explain the dynamics of oil prices, but the increasing of speculative 

behavior and the oil market heterogeneity have made oil-market prices harder to predict 

(Bacon and Kojima (2008)). The goal of this paper is thus to investigate the oil price 

volatility, by studying the causal relationships between different volatilities captured at 

different time scales. To attain this goal, we first decompose the oil price volatility at various 

scales of resolution or frequency ranges by using wavelet analysis. We then explore the 

causalities between absolute returns of oil prices at different time scales. Some studies based 

on wavelet analysis explored linear causal relationships between economic and financial 

variables (Ramsey and Lampart (1998), Almasri and Shukur (2003), Kim and In (2003), 

Zhang and Farley (2004), Dalkır (2004), Mitra (2006), In and Kim (2006), and Cifter and 

Ozun (2007)). However, given the evidence on the nonlinear dynamics of economic and 

financial time series, some authors argue that the traditional Granger causality test, designed 

to detect linear causality, is ineffective in uncovering certain nonlinear causal relationships 

and recommend the use of nonlinear causality tests. (Baek and Brock (1992), Hiemstra and 

Jones (1994), Bell, Kay, and Malley (1996), Hiemstra and Kramer (1997), Skalin and 

Teräsvirta (1999), Chen, Rangarjan, Feng, and Ding (2004), Li (2006).We thus use the 

nonlinear causality test introduced by Péguin-Feissolle and Teräsvirta (1999) and Péguin-

Feissolle, Strikholm and Teräsvirta (2008).   

Our results confirm the fact that the vertical dependence is a strong stylised fact of oil returns 

volatility. But, the main finding consists on the presence of a feed- back effect from high 

frequency traders to low frequency traders. In contrast to Gençay et al. (2010), we prove that 

high frequency shocks could have an impact outside their boundaries and reach the long term 

traders.  

The rest of the paper is organized as follows. The heterogeneous market hypothesis is 

presented in section 2. The section 3 introduces the Wavelet analysis and the nonlinear 

causality tests. The section 4 displays and comments the empirical study of the oil market 

volatility. The section 5 summarizes and concludes the paper.  

 

2. Heterogeneous market hypothesis: literature review 

According to heterogeneous market hypothesis, there is a presence of heterogeneity in the 

traders (Müller et al. (1997)). The market participants may differ in their beliefs, their 

expectations, risk profiles, informational sets.....etc. These differences translate to their 

sensitivity to different time horizons. Thus, the traders are categorized according to their 

characteristic time horizons or dealing frequencies. On the side of high frequency trading, we 

find intraday speculators and market makers. The central banks and institutional investors like 

pensions funds represent the low frequency trading. 

 

De Long and al. (1990a) and (1990b) make a clear distinction between two categories of 

market participants. The first one is constituted by the fundamentalists who are well informed, 

more rational, risk-averse and base their trading rule on the fundamental value of asset prices 

determined by the dividend discount model. The second category is composed by the noise 

traders or chartists who are less informed, irrational, and less risk-averse; their trading rule is 

based on technical analysis and consists on extrapolating recent trend of asset prices. The 
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relative portion of each trader type evolves during time and there exists a permanent shift 

between the two trading strategies according to their past relative performance. Price 

fluctuations are exacerbated by an interaction between a stabilizing force and a destabilizing 

one. The stabilizing force progressively pushes prices toward their fundamental values when 

the market is dominated by fundamentalists. When the noise traders are the dominant 

category, they constitute a destabilizing force which cause securities large deviation away 

from their fundamental value and lead to excessive volatility (Kyrtsou, Labys, Terraza, 

(2004)). This interaction can create complex price behaviour and a possible route to chaos 

(Hommes (2004)).  

As a consequence, this evidence of market heterogeneity leads to a presence of different 

dealing frequencies, and thus different reactions to the same news in the same market. Each 

market component has its own reaction time to information, related to its time horizon and 

characteristic dealing frequency (Dacorogna et al. (2001)). Thus, the volatility process has 

scaling behaviour. We can distinguish the low frequency volatility (coarse) which captures the 

perceptions and actions of long term horizon traders, and a high frequency volatility (fine) 

which captures the expectations and decisions of short term traders (Gençay, Gradojevic, 

Selcuk and Whitcher (2010)). To further examine the volatility multi-frequency structure and 

identify the relative presence of market components, Müller et al. (1997) introduce a 

heterogeneous GARCH model (HARCH) which differs from all other ARCH-type processes 

in the unique property of considering the volatilities of returns over different time horizons. 

We assume that the time –frequency analysis of wavelet transform is a pertinent statistical 

tool for modelling financial markets heterogeneity and price dynamics induced with influence 

from different types of investors characterized by different time horizons. 

Some authors (Müller et al. (1997) and Dacorogna et al. (2001)) show that the asymmetry 

comes from the fact that coarse volatility predicts fine volatility better than the other way 

around (see also Zumbach (2007) and Borland et al. (2008)). The explanation is that, when 

the coarse volatility increases or decreases, the short-term traders modify their trading activity 

and thus change the level of the fine volatility; besides, the level of fine volatility does not 

influence the long-term traders (Müller et al. (1997)). The presence of this information flow 

from large to short time scales motivates a cascade model of volatility (Zumbach and Lynch 

(2001)). Arneodo et al. (1998) show that the nature of correlations that are implied by this 

cascade across scales has a profound implication on the market risk. Gençay, Gradojevic, 

Selçuk and Whitcher (2010) show that in heterogeneous markets, a low-frequency shock to 

the system penetrates through all layers to the short-term traders, while high frequency shocks 

appear to be short lived and may have no impact outside their boundaries.  

 

 

3. Wavelets  analysis 

 

 

The wavelet analysis was introduced to overcome the Fourier transform limitations. Indeed, 

Fourier series requires that the time series under study must be periodic. In addition, it 

assumes that frequencies do not evolve in time. The inadequacy of this stationary assumption 

in dealing with economic and time series stems from the fact that theses time series are 

subject to structural breaks, regime switching, GARCH effects,outliers. Although the short-

time Fourier transform and Gabor transform tried to deal with the stationary assumption by 

using a single fixed window, they have the disadvantage of capturing more and more cycles 

within the analysis window as frequency increases. The innovation of wavelet transform is 

that its window is adjusted automatically to the high or low frequency as it uses short window 

for high frequency and long window at low frequency by employing time compression or 
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dilatation rather than a variation of frequency in the modulated signal. This is achieved by 

dividing the time axis into a sequence of successively smaller segments (Percival and Walden 

(2000)). The discrete wavelet transform (DWT) transforms a time series by dividing it into 

segments of the time domain called „‟scales „‟ or frequency „‟bands‟‟ (Priestley (1996)). The 

scales; from the shortest to the largest; represent progressively high and low frequency 

fluctuations. 

There are two types of wavelets; father wavelets  and mother wavelet . The father wavelet  

 

                 1)( dtt ,   0)( dtt                                                       (1) 

 

The father wavelets represent the smooth or low frequency parts of a signal, and the mother 

wavelets capture the details or high-frequency components. Thus, father wavelets and mother 

wavelets capture respectively the signal trend components and all deviations from this trend. 

A lot of wavelets families have been introduced. The most used empirically are orthogonal 

wavelets such as the Haar, Daublets, Symmlets and coiflets (Daubechies (1992).  

Wavelets consist on a two-scale dilatation equation. The dilatation equation of father 

wavelet )(x can be expressed as follows: 

  )2(2)( kxlx
k

k                                                                        (2) 

The mother wavelet )(x can be derived from the father wavelet by the following formula: 

  ).2(2)( kxhx
k

k                                                                      (3) 

The coefficients kl and kh  are called respectively the low-pass and high-pass filter 

coefficients. They can be expressed as: 

      dtkttlk )2()(
2

1
                                                                  (4) 

   .)2()(
2

1
  dtktthk                                                                  (5) 

Thus, a wavelet representation of a signal or a function )(tf in 
2L (R) consists on a sequence 

of projections onto father and mother wavelets through scaling (stretching and compressing) 

and translation.  

The projections give the wavelet coefficients
kJs ,
,

kJd ,
,….., d

k,1
: 

 

   dttfts kJkJ )()(,,                                                                          (6) 

   dttftd kjkj )()(,,  , for j=1,2,……. .J                                           (7) 

The coefficients 
kJs ,
(smooth) represent the smooth behaviour of the signal at the coarse scale 

2
J

(trend). The coefficients 
kjd ,

 (details) coefficients represent deviations from the trend; 

kJd , ,
 

kkJ dd ,1,1 ,....,
capture the deviations from the coarsest to finest scale and 

kkJ dd ,1,1 ,....,
 

 

  

The wavelet  representation can be expressed  as follows: 

 

 
k

kJkJ

k

kJkJ dtstf ,,,, )()(  )(.......)()( ,1,1,1,1 tdtdt
k k

kkkJkJ   

        

(8) 
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where J is the number of multiresolution levels, and k ranges from 1 to the number of 

coefficients in each level. 

  
 

Assuming that: 

 


k

kJkJJ tstS )()( ,, 

                                                                                               

(9) 

and 

 

)()( ,, tdtD kJ

k

kjj   for j=1, 2,…, J                                                                   (10) 

 

where S J (t) refers to the decomposed time series using scaling function at scale J and )(tD j
 

refers to the decomposed time series using wavelet function at scales j up to scale J , the 

equation (8) can be expresses as : 
 

  ).(.....)()()()( 11 tDtDtDtStf JJJ                                   (11) 

 

As each term in (11) represents an orthogonal component of the signal )(tf at different 

resolutions (scales or frequency ranges). Thus, equation(11) is called a multiresolution 

analysis (Mallat (1989)).  

 

 

 

 

4. Empirical evidence: 

 

4.1. Data description: 

 

The data set consists on daily data of the WTI oil prices ranging from September 8, 1992 to 

December 31, 2008. The returns of oil prices in a continuous compound basis are calculated 

as   where  and  are respectively the prices for day t and t-1. 

The descriptive statistics for return series are summarized in Table I. 

                                  

We take the oil price absolute returns as a proxy of the volatility. Figures 1, 2, and 3 present 

respectively the plot of oil prices, oil returns, and oil absolute returns(see appendix 2). 
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4.2. Oil price absolute returns wavelet decomposition: 

 

In order to perform a wavelet decomposition of oil price absolute returns in a set of six 

orthogonal components D1,D2, . . . , D6, that stand for different dealing frequencies in the oil 

market, we choose the Symmlet basis LA(8). This wavelet is orthogonal, near symmetric and 

have a compact support and good smoothness properties. Figure 4 presents the wavelet 

decomposition plot of oil price absolute returns (see appendix 2). Figure 5 and table II show 

the time scale interpretation of wavelet multiresolution analysis; each time scale corresponds 

to a specific dealing frequency of a category of traders at the oil market.  

 
                     Figure 5.  Dealing frequencies according to wavelet decomposition 
                       

                
                      

 

Table II. Frequency interpretation of MRA scales 

             
 

4.3 Granger causality tests: 

 

We investigate the causal relationships between different oil prices volatilities captured at 

different frequency bands by using the nonlinear causality test introduced by Péguin-Feissolle 

and Teräsvirta (1999) and Péguin-Feissolle, Strikholm and Teräsvirta (2008).  

The standard linear Granger causality test works best when the true causal relationship is 

linear, but loses a lot of power when this is no longer the case. To overcome this drawback, 

Péguin-Feissolle and Teräsvirta (1999) and Péguin-Feissolle, Strikholm and Teräsvirta (2008) 

introduced non causality tests built on a general non linear framework. Two of these tests 

(general and additive) are based on a Taylor expansion of the nonlinear model around a given 

point in a sample space. Another test is based on articifial networks, and puts more 
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restrictions on the functional form of a potential causal relationship between two variables 

than the others. The causal relationship can be represented by regression functions as TAR, 

ESTAR, LSTAR, SETAR, general nonlinear models,…..etc. 

None of the tests dominates the other. Their behavior depends on the non linear functional 

form of the relationship between two variables. Thus,  one test (general, semi-additive, neural 

network based) can strongly dominates the others according to a specific causality type but 

yields poor results when there is a change in the causality functional form. We must use the 

test which seems to capture most of the relationship as the functional form of the causal 

relationship strongly affects the outcome of the tests. Thus, applying the general test when the 

relationship is semi-additive may result in a substantial loss of power compared to the power 

of the additive test.Therefore, using linear, general, additive, or neural tests is very useful at 

approximating all potential causal relationships that may exist between two variables. 

 

The results of the causality tests between oil price absolute returns decomposed into six 

frequency bands are reported in Table III (see appendix 1) 

 

It is worth noting that, in many cases, nonlinear causality tests give different results than the 

standard Granger non causality test; for instance for D6, the null hypotheses of no causality 

from D2 to D1, D3, D6, are accepted by the linear causality test and rejected by the nonlinear 

tests; this conclusion is the same when we consider the causality from D4 to D3, D5. 

Therefore, the nonlinear causality tests, i.e. the two tests based on a Taylor series 

approximation as well as the test based on the artificial neural network, may detect causality 

that would be ignored by the linear Granger test.  
 

Our main finding can be resumed as follows: 

 

 The null hypothesis of no causality from all the frequency bands to D1 are not 

accepted by at least one causality test. Thus, there is a causal relationship from all the 

frequency bands towards D1. On the opposite, there is no causal relationship from D1 to D4, 

D5, D6 and D7. Therefore, considering the frequency band D1, we may assert that all 

frequency bands (low, middle, and high) linearly or nonlinearly cause the highest frequency 

band D1 which corresponds to the trading behavior of intraday-traders or noise traders.  

 

 There are strong bidirectional causal relationships between the first three highest 

frequency bands, i.e. D1, D2 and D3. They correspond to an investment horizon less than 10 

days; the time horizon imposed by regulation authorities to financial institutions in order to 

compute Value at Risk. Thus, on can consider theses frequency ranges as representing an 

homogeneous category of traders corresponding to high frequency component of oil prices 

volatility. 

 

 When we crowd out the frequency band D1 corresponding to noise traders whom 

investment horizon is less than 2 days, there is a bidirectional causal relationship between all 

frequency bands which reveals a strong feed-back effect in the oil volatility process. Thus, 

every frequency bands which corresponds to a specific class of traders in the oil market is 

able to impact the others frequency ranges, i.e the other categories of traders. 
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5. Conclusion 

 

We investigate the causal relationships between different oil prices volatilities captured at 

different time scales by using wavelet analysis and the nonlinear causality test introduced by 

Péguin-Feissolle and Teräsvirta (1999) and Péguin-Feissolle, Strikholm and Teräsvirta 

(2008).     

 Our results confirm the fact that the vertical dependence is a strong stylised fact of oil returns 

volatility. However, our main finding consists on the presence of a feed- back effect from 

high frequency traders to low frequency traders. In contrast to Gençay, Gradojevic, Selçuk 

and Whitcher (2010), we prove that high frequency shocks could have an impact outside their 

boundaries and reach the long term traders. In contrast to (Müller et al. (1997)), the level of 

fine volatility may have a strong influence on the long-term traders. The motivation of a 

cascade model of volatility (Zumbach and Lynch (2001)) comes under question as there is 

presence of information flow not only from large to short time scales but also the reverse 

hypothesis has been proved. 
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                                                  Appendix 1:  Nonlinear causality testing 

 

 

1. Noncausality testing based on a Taylor series approximation 

 

The test is based on a Taylor expansion of the nonlinear function: 
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y  are 

weakly stationary and ergodic. The functional form of 
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adequately represents the causal relationship between 
t

x  and .
t

y  Moreover, we assume that 

*f has a convergent Taylor expansion at any arbitrary point of the sample space for every 

* (the parameter space). In order to apply (1) for testing noncausality hypothesis, it is 

stated that 
t

x  does not cause 
t

y  if the past values of 
t

x  does not contain any information 

about 
t

y  that is already contained in the past values of 
t

y  itself. More specifically, under the 

noncausality hypothesis, we have: 
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To test (2) against (1), following Péguin-Feissolle and Teräsvirta (1999), we linearize 
*f  in 

(1) by expanding the function into a kth-order Taylor series around an arbitrary fixed point in 
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where ),,()(* yxR k

ttt
  

)(k

t
R  being the remainder, and kn   and  kq   for notational 

convenience.  Expansion (3) contains all possible combinations of lagged values of 
t

y  and 
t

x  

up to order .k  The assumption that 
t

x  does not cause 
t

y  means that all terms involving 

functions of elements of lagged values of 
t

x  in (3) must have zero coefficients. According to 

Péguin-Feissolle and Teräsvirta (1999), there are two practical difficulties related to equation 

(3). One is numerical and the other one has to do with the amount of information. The 

numerical problem arises because the regressors in (3) tend to be highly collinear if both ,k  

q and n are large. The other problem is that the number of regressors increases rapidly with 

,k  so that the number of degrees of freedom may become rather small. A practical solution to 

both problems consists in replacing some observation matrices by their largest principal 

components. First divide the regressors in (3) into two groups: those being the function of lags 

of 
t

y  only and the rest. Replace the regressors in (3) by the first 
*p  principal components of 

each matrix of observations. The null hypothesis is that the principal components of the latter 

group have zero coefficients. This yields the test statistic: 
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where 0SSR   and 1SSR are obtained as follows. Regress 
t

y  on 1 and the first 
*p  principal 

components of the matrix of lags of 
t

y  only,  form the residuals t̂ , t=1,...,T, and the 

corresponding sum of squared residuals .0SSR  Then regress  t̂  on 1 and all the terms of the 

two principal components matrices, form the residuals and the corresponding sum of squared 

residuals .1SSR  The test statistic has approximately an F-distribution with 
*p and 

*21 pT   degrees of freedom. 

The problem of degrees of freedom is less acute if we can assume that the general model is 

"semi-additive": 

tfnttgqttt xxfyygy    ),,,(),,,( 11 
                                          (5)

 

where  '''' , fg   is the parameter vector; in this case, 
t

x  does not cause 
t

y  if 

),,,( 1 fntt xxf   =constant. We linearize both functions into a kth-order Taylor series as 

before and we obtain the statistic called Additive.   

 

2. Noncausality test based on artificial neural networks 

 

The ANN-based noncausality tests is characterized by a single hidden layer network with a 

logistic neural function and related to model (5), that is, semi-additivity of the functional form 

has to be assumed before applying the test; ),,,( 1 fntt xxf   in (5) can be approximated by 

tj w

p

j

jt
e

w
'

1

0
1

1
'~





 

                                                      (6) 

where 0 ,  ''~,1 tt ww   is a 1)1( n vector,  '1 ,,~
nttt xx   ,  '1,..., n   are 

1n vectors, and the  '0 ,..., jnjj   , for j=1,…,p, are 1)1( n vectors. The sequences 

 
t

x  and  
t

y  are weakly stationary and ergodic. The null hypothesis of Granger 

noncausality, i.e. that 
t

x  does not cause
t

y , can be formulated as 

00:02   andH where  '1,..., p   is a p×1 vector. The identification problem the j  

under the null hypothesis is solved by generating j , j=1, ..., p, randomly from a uniform 

distribution, following Lee, White and Granger (1993). Implementing a Lagrange multiplier 

type version of the test requires the computation of the T×(n+p+m) matrix R=[Z  F] where Z 

is a T×m matrix containing all variables due to the k-th order Taylor expansion of g, and the t-

th row of F has the form 

  











 tpt ee
wF tt  ''

'
**

1 1

1
,...,

1

1
,~                                       (7) 

where
*

j , j=1,..,p, contain the randomly drawn values of the corresponding unidentified 

parameter vectors. As Lee, White and Granger (1993) pointed out, the elements of the second 

submatrix of F tend to be collinear with themselves and with the first part of F. Thus we 

conduct the test using the first principal components of the second submatrix of F. This leads 

to the test statistic called Neural where we generate the hidden unit weights, i.e. the different 

elements of the vectors j , for j=1,...,p, randomly from the uniform distribution. 
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Table III. Results of linear and nonlinear causality tests (p-values) (non causality) 

 

  
 

 
Note: Di Dj is for the null hypothesis of no causality from Di to Dj, for I , j=1, …, 6.. Linear is the linear Granger causality 

test, General and Additive are the nonlinear causality tests based on a Taylor series approximation (Additive is the test 

statistic based on the "semi-additive" model), and Neural is the nonlinear causality test based on artificial neural networks.  

We Assume that we have two weakly stationary and ergodic time series  and .  In order to compute each test statistic, the number of 

lagged values of 
t

y is q=2, the number of lagged values of tx
 
is n=3 and the order of Taylor expansion is k=3. In the neural network test, 

following Lee, White and Granger (1993), the number of hidden units is p=20 and we generate the different elements of the vectors j , for 

j=1,...,p, randomly from the uniform [-μ,μ] distribution with μ=2. Moreover, the number of principal components is determined 
automatically in each case; this is done by including the largest principal components that together explain at least 80% of the variation in the 

corresponding matrix. 
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                                 Appendix 2. Figures 1, 2, 3 and 4 

 

                              Figure 1 . The time series plot of WTI oil prices 
 

 

                   
    

                                      Figure 2. WTI oil prices returns 

 

                
 

 

                                            Figure 3. WTI oil absolute returns 
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                                        Figure 4. Oil absolute returns wavelet decomposition 

 

 

                      


