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Abstract 
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1. Introduction 

 

         Since the seminal work of Dickey and Fuller (1979), a large body of literature has come 

out considering the test of the unit root hypothesis.  While issues such as robustness to serial 

correlation, heteroskedasticity, and structural change have been well explored, perhaps the most 

prominent aspect of this literature is the development of tests that aspire to improve the power 

properties of the Dickey-Fuller (DF) test.  It is a well-known fact that the OLS mean adjustment 

(detrending) used in the DF test has a detrimental effect on the test’s power properties.  Elliot et 

al. (1996, ESR) investigate the issue of efficient detrending and derive a more powerful test by 

utilizing GLS detrending (see also Hwang and Schmidt (1996)).  Alternatively, So and Shin 

(1999) and Shin and So (2001) suggest a recursive detrending method based test that they show 

is as powerful as the GLS-based test.     

          There has also been increasing concern that the DF test, which is derived under a linear 

setting, may fail to reject the null of a unit root when applied to non-linear but stationary time 

series.  As a response to the concern, a range of unit root tests have been developed under a 

variety of nonlinear frameworks (see, for example, Enders and Granger (1998), Kapetanios, et 

al. (2003, KSS), Bec, et al. (2004), and Sollis (2009)).   Among them, KSS (2003) propose a 

unit-root test using an auxiliary regression model that approximates the exponential smooth 

transition autoregressive (ESTAR) process using the Taylor series.  As shown in KSS (2003), 

the test is more powerful than the DF test under the alternative of a globally stationary ESTAR 

process.  Like the usual DF test, the KSS test uses OLS-detrending and its power may be 

improved if more efficient detrending methods were used.  Kapetanios and Shin (2008) use 

GLS-detrending method and demonstrate that the GLS-based test is more powerful than the 

OLS-based test.  Yet, to the best of our knowledge, there is no study that examines if recursive 

detrending also works for the KSS test.  In this paper we aim to fill this gap in the literature. 

          The paper proceeds as follows.  Section 2 reviews the KSS test with different detrending 

methods.  Section 3 presents results from Monte Carlo experiments.  Section 4 gives an 

empirical example.  Section 5 concludes. 

 

2. The KSS test 

 

         Let
ty , t=1,2,…,T, be an observed time series that can be decomposed into a deterministic 

part td  and a stochastic (mean-adjusted) part tx : 

 

 
t t ty d x= + .                                                              (1) 

 

For the deterministic part, we consider two cases: Case A (level): td α= ; Case B (trend): 

td tα β= + .  For the stochastic part, we consider the following ESTAR model 

 

  ( ){ }2

1 11 expt t t tx x xγ θ ε− −∆ = − − + ,                                          (2) 

 

where tε ~iid(0,σ2
) and 2 0γ− < < .  Given γ , when 0θ = , tx  contains a unit root (so does ty ) 

while when 0θ > , tx  is globally stationary (so that ty  is either level-stationary or trend-

stationary) and the speed of mean reversion is determined by θ .  Testing for a unit root in 
ty  
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can be done by examining the null hypothesis of 0 : 0H θ =  (unit root) against the alternative 

hypothesis 1 : 0H θ >  (stationary). 

         Obviously, testing the null hypothesis is not feasible since γ  is unidentified under the null.  

To overcome the problem, KSS apply a first-order Taylor series expansion to derive the 

following auxiliary equation:  

 
3

1t t tx xδ ε−∆ = + ,                                                             (3) 

 

where 
1t t tx x x −∆ = −  and δ γ θ= − , and suggest a t-type test for 0δ =  against δ <0 as 

 
ˆ ˆ/ . .( )t s eδ δ= ,                                                              (4) 

 

where δ̂  is the OLS estimate of δ  and ˆ. .( )s e δ  is the standard error of δ̂ .  Notice that tx  

represents the unobserved deviation from the deterministic part td  of ty  in (1).  To make the t 

test in (4) feasible, 
td  needs to be removed from the series first.  KSS suggest using OLS 

residuals from the regression of ty  on td .  Like the usual OLS-based DF test that also uses the 

OLS residuals, the OLS-based KSS test is lack of power.  To improve the power in the context 

of linear unit root tests, ESR (1996) derive a more powerful DF test based on GLS residuals.  

Following ESR, Kapetanios and Shin (2008) suggest a modified KSS test with GLS residuals: 

t ty d− � , with td�  obtained from the regression of tyρ  on td ρ , where 

1 2 1 1{ , ,..., }t T Ty y y y y yρ ρ ρ −= − −  and 
1 2 1 1{ , ,..., }t T Tz z z z z zρ ρ ρ −= − −  with 

tz =1 (Case A) or 

(1, ) 't  (Case B).  Kapetanios and Shin (2008) recommend setting 17.5ρ = −  and confirm with 

simulation that the GLS detrending-based KSS test is more powerful than its OLS counterpart. 

         The deterministic part can also be removed through recursive detrending.  So and Shin 

(1999) and Shin and So (2001) first suggest this approach in a linear unit root testing context 

and find the resulting test dominates the OLS-based DF test and is as powerful as the GLS-

based test.  In this paper, we are of interest to examine if the recursive-detrending approach will 

also be useful for the KSS test.  For Case A, we use 
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respectively for 
t

x  and 1t
x −  in (3), for 2t ≥ .  In (5), 

t
y  and 1t

y −  are both demeaned using lagged 

recursive mean 1 1
1( 1) t

i i
t y− −

=− ∑ , as in So and Shin (1999) and Shin and So (2001).  For the trending 

case (Case B), there are various discussions of the problem regarding invariant transformation – 

see Taylor (2002), Phillips et al. (2004), and Rodrigues (2006).  In this paper, following Phillips 

et al (2004), we use  
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in place of tx  and 1tx −  in (3), respectively, for 2t ≥ .  It is worth noting that we have also tried 

other recursive-detrending methods suggested in Taylor (2004) and Rodrigues (2006) and found 

that the test based on the detrending method of Phillips et al (2004) is more powerful than the 

others.  Critical values of the KSS statistics have been tabulated via simulations at T=50, 100, 

200, 500, 1,000 and 2,000 with 50,000 replications, and presented in Table 1.   

 

3. Monte Carol Results 

 

         In this section we report the results of Monte Carlo simulations designed to investigate the 

power of the KSS test when different methods of mean adjustment are considered.  Simulations 

are performed in GAUSS for two sets of experiments: (1) stationary AR(1) processes (2) 

globally stationary ESTAR processes.  We construct the model 
t t ty d x= + , where 

 

1t t tx xρ ε−= +                                                              (7) 

  

for the AR(1) model and  

 

( ){ }2

1 1 11 expt t t t tx x x xγ θ ε− − −= + − − +                                           (8) 

  

for the ESTAR model with ~ (0,1)t Nε  and t=1,2,…, T.  In line with the literature, we set  

0td =  since all the tests considered are similar.  For the AR processes, we consider ρ =0.99, 

0.95, 0.9, 0.85.  For the ESTAR processes, we consider γ =-0.1, -0.5, -1 and θ =0.01, 0.05, 0.01.  

The nominal size is set at 5% using the critical values in Table 1.  The results are calculated 

using 5,000 replications at sample sizes T=100, 200, and 500.  Following Kapetanios and Shin 

(2008), for all experiments the first 200 initial observations are discarded to minimize initial 

effects.  We report the result in Table 1 and 2 and denote the KSS tests based on OLS, GLS and 

recursive detrending as KSS, KSSg and KSSr, respectively. 

         Table 2 gives the empirical power of the KSS test against the stationary AR(1) processes.  

Among the three tests, it is clearly shown that the recursive detrending-based test has the lowest 

power in both cases.  Comparing the two modified tests the recursive detrending-based test 

appears to be somewhat more powerful than the GLS-based test in Case A (the only exception is 

when 0.99ρ =  and T=500).  For example, at T=200, the rejection frequency is 0.764 for KSSr 

and 0.703 for KSSg when ρ = 0.9 and 0.378 for KSSr and 0.354 for KSSg when 0.95ρ = .  For 

Case B, the recursive detrending-based test still dominates the GLS-based test when ρ = 0.85 or 

0.9 but does not when ρ = 0.95 or 0.99.  For example, at T=200, the rejection frequency is 0.516 

for KSSr and 0.477 for KSSg when ρ = 0.9 but 0.194 for KSSr and 0.198 for KSSg when 

ρ = 0.95.  Overall, the recursive detrending-based test seems to perform well to reject linear 

stationary alternatives. 

         Table 3 gives the empirical power of the KSS test against the stationary ESTAR processes.  

For Case A, as expected, the OLS-based test has the lowest power among the three tests and the 

two modified tests seem to have very similar power.  For example, at T=200, the rejection 

frequency is 0.433 for KSS, 0.534 for KSSr and 0.555 for KSSg when ( , ) ( 0.1,0.05)γ θ = −  and 
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0.542 for KSS, 0.666 for KSSr and 0.658 for KSSg when ( , ) ( 0.1,0.1)γ θ = − .  For the trending 

case (Case B), the GLS-based test is still more powerful than the others.  Surprisingly, the 

recursive detrending-based test is no longer working well – as a matter of fact, in several 

occasions (when θ  is small, in particular) it can be even less powerful than the OLS-based test.  

For example, at T=200 with ( , ) ( 0.5,0.01)γ θ = − , the rejection rate is 0.429 for KSS and 0.524 

for KSSg but only 0.370 for KSSr.   

         Overall, it appears to be a good idea applying the recursive detrending-based KSS test to 

series without a deterministic trend as the test is more powerful than its OLS and GLS 

counterparts.  However, it might not if removal of a deterministic trend is required.  

 

4. Application to inflation rates 

 

         We apply the three KSS tests to quarterly CPI inflation rates of three countries (US, UK 

and Australia).  The data are taken from the International Financial Statistics, covering the 

period 1958(1)-2007(4) with 200 observations.  To accommodate serially correlated errors, we 

follow Kapetanios and Shin (2008) and augment with 4 lags to match quarterly frequency of the 

data.  We assume there is no trend in the data (Case A) and report three sets of empirical results 

– the whole period and two sub-periods (1958(1)-1982(4) and 1983(1)-2007(4)) with 100 

observations each – in Table 4.    

          The unit root null hypothesis is rejected for US and UK inflation rates in most cases but 

not for Australia.  The rejection tends to be stronger when modified tests (KSSg and KSSr) are 

used.  Also, there are occasions (i.e., US and UK during 1983(1)-2007(4)) that KSSr is able to 

reject the null while KSSg is not, a result that is presumably due to the better power 

performance of KSSr. 

 

5. Conclusion 

 

         In this paper, we study the power performance of a modified KSS test by means of 

simulation.  We show that the recursive detrending-based KSS test is more powerful than its 

OLS and GLS counterparts in the case that only a non-trending mean needs to removed.  The 

recursive test, however, is no longer performing well if adjustment for a deterministic trend is 

required. 
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Table 1: Critical Values of Modified KSS tests 

 

 

(a) Case A: Level 

 
   KSS    KSSr     KSSg   

  10% 5% 1% 10% 5% 1% 10% 5% 1% 

50 -2.66 -2.95 -3.55 -1.77 -2.10 -2.70 -2.59 -2.86 -3.46 

100 -2.65 -2.94 -3.51 -1.79 -2.12 -2.73 -2.44 -2.72 -3.26 

200 -2.64 -2.94 -3.50 -1.81 -2.13 -2.73 -2.26 -2.53 -3.08 

500 -2.65 -2.93 -3.51 -1.82 -2.13 -2.73 -2.10 -2.37 -2.92 

1000 -2.66 -2.93 -3.47  -1.82 -2.14 -2.74 -2.01 -2.33 -2.90 

2000 -2.65 -2.93 -3.49 -1.82 -2.14 -2.74 -1.97 -2.23 -2.82 

 

 

(b) Case B: Trend 

 
   KSS    KSSr     KSSg   

  10% 5% 1% 10% 5% 1% 10% 5% 1% 

50 -3.14 -3.45 -4.12 -1.65 -1.97 -2.60 -2.93 -3.24 -3.87 

100 -3.13 -3.42 -3.98 -1.70 -2.01 -2.62 -2.81 -3.09 -3.65 

200 -3.13 -3.41 -3.97 -1.71 -2.01 -2.63 -2.74 -3.01 -3.56 

500 -3.12 -3.40 -3.95 -1.72 -2.03 -2.65 -2.68 -2.97 -3.58 

1000 -3.13 -3.40 -3.93 -1.72 -2.03 -2.64 -2.66 -2.95 -3.52 

2000 -3.13 -3.39 -3.93 -1.72 -2.03 -2.63 -2.65 -2.93 -3.50 
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Table 2: Empirical Power of Modified KSS tests against AR(1) 

 

(a) Case A: level 

 
    KSS     KSSr     KSSg   

AR T=100 T=200 T=500 T=100 T=200 T=500  T=100 T=200 T=500  

0.99 0.059 0.067  0.117 0.066 0.085  0.163 0.061 0.084 0.170 

0.95 0.120 0.263  0.736 0.164 0.378  0.874 0.145 0.354 0.846 

0.90 0.249 0.599  0.978 0.363 0.764  0.994 0.295 0.703 0.992 

0.85 0.434 0.837  0.996 0.599 0.934  1.000 0.497 0.902 0.999 

 

(b) Case B: trend 

 
    KSS     KSSr     KSSg   

AR T=100 T=200 T=500 T=100 T=200 T=500  T=100 T=200 T=500  

0.99 0.053 0.055 0.078 0.053 0.060  0.084 0.055 0.057 0.090 

0.95 0.080 0.153 0.548 0.089 0.194  0.671 0.092 0.198 0.614 

0.90 0.152 0.403 0.929 0.188 0.516  0.978 0.184 0.477 0.930 

0.85 0.264 0.668 0.988 0.333 0.798  0.998 0.314 0.734 0.990 

 

 

Table 3: Empirical Power of Modified KSS tests against ESTAR 

 

(a) Case A: level 

 
     KSS     KSSr     KSSg   

γ θ T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 

  0.01 0.090 0.160 0.698  0.121 0.210  0.772 0.108 0.239 0.731 

-0.1 0.05 0.147 0.433 0.978 0.201 0.534  0.991 0.183 0.555 0.981 

  0.10 0.189 0.542 0.984 0.258 0.666  0.995 0.233 0.658 0.990 

  0.01 0.242 0.735 0.999  0.307 0.785  1.000 0.309 0.787 0.999 

-0.5 0.05 0.773 0.996 1.000 0.827 1.000  1.000 0.813 0.994 1.000 

  0.10 0.940 1.000 1.000 0.961 1.000 1.000 0.943 1.000 1.000 

  0.01 0.489 0.953 1.000 0.550 0.964  1.000 0.566 0.944 1.000 

-1.0 0.05 0.980 1.000 1.000 0.987 1.000  1.000 0.980 1.000 1.000 

  0.10 0.999 1.000 1.000 0.999 1.000  1.000 0.998 1.000 1.000 

 

(b) Case B: trend 

 
     KSS     KSSr     KSSg   

γ θ T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 

  0.01 0.062 0.095 0.403 0.075 0.106 0.344  0.071 0.122 0.484 

-0.1 0.05 0.094 0.230 0.890 0.099 0.238 0.855 0.107 0.300 0.868 

  0.10 0.111 0.317 0.940 0.114 0.336 0.942  0.143 0.390 0.918 

  0.01 0.147 0.439 0.993 0.138 0.370 0.982  0.186 0.524 0.962 

-0.5 0.05 0.528 0.977 1.000 0.455 0.946 1.000 0.604 0.963 1.000 

  0.10 0.783 0.998 1.000 0.710  0.994 1.000 0.834 0.991 1.000 

  0.01 0.280 0.808 1.000 0.223 0.696 1.000 0.346 0.821 0.997 

-1.0 0.05 0.900 1.000 1.000 0.812 0.998 1.000 0.913 0.998 1.000 

  0.10 0.990 1.000 1.000 0.970 1.000 1.000 0.983 1.000 1.000 
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Table 4: KSS test results for CPI Inflation (Case A: level) 

 

 Time Period Country  KSS KSSr KSSg 

  US -2.38 -2.11* -2.30* 

1958(1)-2007(4) UK -3.17** -2.39** -3.07** 

  Australia -2.35 -1.54 -2.11 

  US -3.18** -2.76*** -3.08** 

1958(1)-1982(4) UK -2.68* -1.87* -2.59* 

  Australia -2.30 -1.39 -2.14 

  US -2.17 -2.01* -2.38 

1983(1)-2007(4) UK -2.25 -2.12** -2.35 

  Australia -1.31 -0.26 -1.21 

 
Note: * denotes rejection at 10% significance level, ** denote rejection at 5% level, 

and *** denote rejection at 1% level.  Critical values from Table 1(a) for T=100 and 

200 are used. 


