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Abstract 

The Milgrom-Shannon single crossing property is essential for monotone comparative statics of optimization problems 
and noncooperative games. This paper formulates conditions for an additively separable objective function to satisfy 
the single crossing property. One component of the objective function is assumed to allow a monotone concave 
transformation with increasing differences, and to be nondecreasing in the parameter variable. The other component is 
assumed to exhibit increasing differences, and to be nonincreasing in the choice variable. As an application, I prove 
existence of an isotone pure strategy Nash equilibrium in a Cournot duopoly with logconcave demand, affiliated types, 
and nondecreasing costs.
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1. Introduction

Monotone comparative statics has proven to be an extremely useful tool in

numerous economic applications. Fundamental concepts of cardinal super-

modularity (Topkis 1978, Milgrom and Roberts 1990) have been re�ned over

time into more general, ordinal variants (Milgrom and Shannon 1994). How-

ever, ordinal techniques are less straightforward to apply when the problem

is characterized by a separable objective function. For instance, while the

sum of two supermodular functions is again supermodular, the sum of two

logsupermodular functions need not be logsupermodular.1

The present paper addresses this problem by o¤ering conditions under

which an additively separable objective function becomes eligible for the or-

dinal approach to monotone comparative statics. For this, the �rst term

of the objective function is assumed to possess a monotone concave trans-

formation with increasing di¤erences, and to be weakly increasing in the

parameter variable. The other term is assumed to exhibit increasing di¤er-

ences, and to be weakly decreasing in the choice variable. I will show that

with these assumptions in place, the objective function indeed satis�es the

Milgrom-Shannon single crossing property.

To see the theorem at work, consider a �rm operating in a homogeneous

good market by setting an output level (the choice variable). Assume inverse

demand to be logconcave and monotone declining, and costs to be monotone

increasing. For convenience, let the natural order on the set of rivals�joint

output (the parameter variable) be reversed. Then, log-revenues exhibit in-

creasing di¤erences, and revenues are weakly increasing in the parameter

variable. Moreover, the negative cost term trivially exhibits increasing dif-

ferences, and is weakly decreasing in the choice variable. Thus, pro�ts satisfy

the single crossing property, and the set of best responses is monotone non-

decreasing in the parameter variable.2

The rest of the paper is structured as follows. Elements of the Milgrom-

1See, e.g., Athey (2002). For de�nitions of standard terms, see Section 2 of the present
paper.

2This particular setting has been studied before by Amir (1996). For an application
that yields new results, see Section 5.
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Shannon theory are reviewed in Section 2. Section 3 de�nes and characterizes

the notion of concavely increasing di¤erences. The main result of the paper is

stated and proved in Section 4. Section 5 contains an application to Bayesian

Cournot games.

2. Review of standard theory

This section brie�y reviews the main elements of the ordinal approach to

monotone comparative statics. For an introduction to this theory, see Mil-

grom and Shannon (1994).

A set of decisions, X, is equipped with a binary relation �. The relation
� is re�exive if x � x for every x 2 X, transitive if x � x0 and x0 � x00 implies
that x � x00 for all x; x0; x00 2 X, and antisymmetric if x � x0 and x0 � x

implies that x = x0 for all x; x0 2 X. A set X with a re�exive, transitive,

and antisymmetric binary relation � is a partially ordered set. For x; x0 2 X,
denote by x^ x0 the least upper bound, if it exists, and by x_ x0 the greatest
lower bound, if it exists. If for any pair x; x0 2 X, both x^x0 and x_x0 exist,
then the partially ordered set X is a lattice. If for any x 6= x0, either x � x0

or x � x0, then the lattice X is a chain.

Let X be a lattice, T be a partially ordered set of parameter values, and

f : X � T ! R. Then f has increasing [decreasing] di¤erences in (x; t)
if for x � x0, f(x; t) � f(x0; t) is nondecreasing [nonincreasing] in t. The
function f satis�es the single crossing property in (x; t) if for x0 > x00 and

t0 > t00, f(x0; t00) > f(x00; t00) implies that f(x0; t0) > f(x00; t0) and f(x0; t00) �
f(x00; t00) implies that f(x0; t0) � f(x00; t0). If f(x0; t00) � f(x00; t00) implies

that f(x0; t0) > f(x00; t0), then f satis�es the strict single crossing property in

(x; t). f satis�es the dual single crossing property in (x; t) if �f satis�es the
single crossing property in (x; t).

A function f : X ! R on some lattice X is supermodular if f(x ^ x0) +
f(x _ x0) � f(x) + f(x0) for any x; x0 2 X. The function f is submodu-

lar if �f is supermodular. A strictly positive function is logsupermodular

(logsubmodular) if the log of that function is supermodular (submodular).

f is quasisupermodular if for any x; x0 2 X, f(x) � f(x ^ x0) implies that
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f(x _ x0) � f(x0) and f(x) > f(x ^ x0) implies that f(x _ x0) > f(x0). Any
supermodular function is quasisupermodular. Moreover, every function on a

chain is quasisupermodular.

For X a lattice, and subsets Y; Z � X, write Z �s Y if for every z 2 Z
and every y 2 Y , y ^ z 2 Z and y _ z 2 Y . Given a partially ordered set T ,
a set-valued function M mapping elements of T to subsets of X is monotone

nondecreasing if t � t0 implies M(t) �s M(t0). The usefulness of the single
crossing property is mainly due to the following fact, a proof of which can

be found in Milgrom and Shannon (1994).

Theorem 1. (Monotonicity Theorem) Let f : X � T ! R, where X is

a lattice, T is a partially ordered set, and S � X. Then argmaxx2S f(x; t)
is monotone nondecreasing in (t; S) if and only if f is quasisupermodular in

x and satis�es the single crossing property in (x; t).

3. Concavely increasing di¤erences

This section introduces the notion of concavely increasing di¤erences and

o¤ers a characterization that will be useful to prove the main result of this

paper.

De�nition 1. Let X and T be partially ordered sets. A function g : X�T !
R has [strict] concavely increasing di¤erences in (x; t) if for any x0 >
x00 and t0 > t00, there exists some strictly increasing, concave transformation

� = �(x0;x00;t0;t00) such that

�(g(x0; t0))� �(g(x00; t0)) �
[>]

�(g(x0; t00))� �(g(x00; t00)). (1)

Obviously, any function with increasing di¤erences has concavely increasing

di¤erences. Moreover, any function that is logsupermodular on the prod-

uct space X � T (where both X and T are lattices) has concavely increas-

ing di¤erences.3 Note, however, that there are functions that ful�ll neither

3Another example are rootsupermodular functions, as de�ned by Eeckhout and Kircher
(2010).
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property and still satisfy De�nition 1. Indeed, in Example 1, the inequal-

ity �(19) � �(29) � �(18) � �(27) fails for transformations �(y) = y and

�(y) = ln y, yet holds for �(y) = �1=y.
These examples might suggest that De�nition 1 just requires g to be

a function for which some concave and monotone transform has increasing

di¤erences. However, the de�nition is more �exible since the transformation

� may vary with the quadruple (x0; x00; t0; t00).

To prepare the key result, I state the following characterization of con-

cavely increasing di¤erences.

Lemma 1. A function g has [strict] concavely increasing di¤erences in (x; t)
if and only if for any x0 > x00 and t0 > t00 such that minfg(x00; t0); g(x0; t00)g �
minfg(x0; t0); g(x00; t00)g, the inequality

g(x0; t0)� g(x00; t0) �
[>]

g(x0; t00)� g(x00; t00) (2)

holds.

Proof. The proof is given for the case of nonstrict di¤erences only. The other
case is analogous. �Only if�. Assume g has concavely increasing di¤erences

in (x; t), and let x0 > x00 and t0 > t00. Write a = g(x00; t00), b = g(x00; t0),

c = g(x0; t00), and d = g(x0; t0). Then there is a strictly increasing, concave
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transformation � = �(x0;x00;t0;t00) such that �(d) � �(b) � �(c) � �(a). I wish
to show that this implies d� b � c� a provided that minfb; cg � minfa; dg.
Since the roles of a and d in this claim are interchangable, and equally those

of b and c, one may assume without loss of generality that a � b � c.

Then necessarily c � d, because otherwise �(d) < �(c) and �(b) � �(a),

in con�ict with �(d) � �(b) � �(c) � �(a). Thus, a � b � c � d. Now

if one had d � b < c � a, then with a concave and strictly increasing �,
�(d)� �(b) < �(c)� �(a), a contradiction. Therefore, indeed, d� b � c� a.
�If�. Using the same notation, assume g satis�es d � b � c � a provided
that minfb; cg � minfa; dg. I need to �nd a strictly increasing, concave
� = �(x0;x00;t0;t00) such that �(b)+�(c) � �(a)+�(d). Consider �rstminfb; cg <
minfa; dg. If b = c, the claim follows for any strictly increasing �. Therefore,
without loss of generality, b < a; c; d. In this case, de�ne �(a) = a, �(c) = c,

�(d) = d, and �(b) su¢ ciently negative so that �(b) + �(c) � �(a) + �(d).

Clearly, � can be extended to a strictly increasing, concave function on R.
Consider now minfb; cg � minfa; dg. Then, by assumption, b + c � a + d.

Clearly, in this case, � can be chosen linear. �

Thus, concavely increasing di¤erences requires increasing di¤erences only

when �o¤-diagonals�g(x00; t0), g(x0; t00) do not fall below the minimum of the

�diagonals�g(x0; t0), g(x00; t00).

Lemma 1 implies that any monotone function, increasing or decreasing,

that exhibits concavely increasing di¤erences must have increasing di¤er-

ences. Note, however, that in typical applications the objective function is

not monotone in the choice variable.

4. Separable objective functions

The main result of the paper is the following.

Theorem 2. Let X and T be partially ordered sets. Consider functions

g; h : X � T ! R. Assume that g has concavely increasing di¤erences in
(x; t) and is nondecreasing [nonincreasing] in t. Assume also that h has

increasing di¤erences in (x; t) and is nonincreasing [nondecreasing] in x.
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Then g + h satis�es the single crossing property in (x; t). If, in addition, g

has strict concavely increasing di¤erences in (x; t) and is strictly increasing

[decreasing] in t, then g + h satis�es the strict single crossing property in

(x; t).

Proof. According to the de�nition, f = g + h satis�es the single crossing

property in (x; t) if for x0 > x00 and t0 > t00, f(x0; t00) � f(x00; t00) implies that
f(x0; t0) � f(x00; t0) and f(x0; t00) > f(x00; t00) implies that f(x0; t0) > f(x00; t0).
So take arbitrary x0 > x00 and t0 > t00. Impose

f(x0; t00) � f(x00; t00). (3)

Since h is nonincreasing in x, inequality (3) implies g(x0; t00) � g(x00; t00).

Moreover, g is nondecreasing in t, so g(x00; t0) � g(x00; t00). By assumption, g
has concavely increasing di¤erences in (x; t). Thus, by Lemma 1,

g(x0; t0)� g(x00; t0) � g(x0; t00)� g(x00; t00). (4)

But h has increasing di¤erences in (x; t), so that

h(x0; t0)� h(x00; t0) � h(x0; t00)� h(x00; t00). (5)

Adding (4) and (5) term by term yields

f(x0; t0)� f(x00; t0) � f(x0; t00)� f(x00; t00). (6)

Combining this with (3), one obtains

f(x0; t0)� f(x00; t0) � 0, (7)

as desired. Moreover, if inequality (3) holds strictly, so does (7). This proves

the claim for nonstrict di¤erences. To prove the claim also for strict di¤er-

ences, note that inequality (4) is then strict, so that inequality (3) implies

the strict version of (7), as required by the strict single crossing property. �

For intuition, focus on T and X being two-element subsets of R, and �
being the logarithm. Clearly, the conclusion is obvious when g has actually

increasing di¤erences. So assume that the slope g(x0;t)�g(x00;t)
x0�x00 , regarded as a
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function of t, strictly decreases, while the ratio g(x0;t)
g(x00;t) weakly increases in t,

as illustrated in Figure 1. Since g is nondecreasing in t, a moment�s re�ection

shows that this is possible only when g is strictly downward-sloping at t00.4

But then, adding a function h that is nonincreasing in x implies the single

crossing property for the sum.

To extend Theorem 2, re-order T (or, equivalently, X). E.g., assume that

g has concavely decreasing di¤erences in (x; t), which is de�ned in analogy to

De�nition 1, and that g is nonincreasing [nondecreasing] in t. Then, with h

having decreasing di¤erences in (x; t) and being nonincreasing [nondecreas-

ing] in x, it follows that g + h satis�es the dual single crossing property in

(x; t).

Another extension assumes that g has convexly increasing or decreasing

di¤erences in (x; t), where again, the notions are de�ned in analogy to De-

�nition 1. For instance, when g has convexly increasing di¤erences in (x; t)

and is nondecreasing [nonincreasing] in t, and h has increasing di¤erences in

(x; t) and is nondecreasing [nonincreasing] in x, then g+h satis�es the single

4Indeed, if g were upwards sloping or �at at t00, then the strictly lower slope at t0 would
make the ratio g(x0; t)=g(x00; t) decline strictly in t.
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crossing property.5

In applications, one typically has to check also that the objective function

is quasisupermodular in the decision variable.6 Su¢ cient conditions for an

additively separable function to be quasisupermodular in the choice variable

are obviously either that (i) each term is supermodular in the choice variable,

or that (ii) the choice set is a chain (e.g., a subset of R).
With these remarks in mind, Theorem 2 can be readily applied to the com-

parative statics of optimization problems and noncooperative games charac-

terized by separable objective functions. A simple example has already been

given in the Introduction. The next section o¤ers a more elaborate applica-

tion.

5. Application: Bayesian Cournot games

This section deals with equilibrium existence in the undi¤erentiated Cournot

model with a¢ liated types. A pure strategy Nash equilibrium is known to

exist regardless of distributional assumptions provided certainty payo¤s are

submodular in �rms�actions (Vives 1990). Under additional complementar-

ities between actions and types, even an isotone equilibrium exists for a¢ li-

ated types (Athey 2001).7 However, cardinal submodularity in actions is not

a completely innocuous assumption in the Bayesian Cournot model because

uncertainty then tends to generate negative prices (cf. Einy et al. 2010).8

This problem can be circumvented using Theorem 2. As will be shown now,

there exists a set of simple conditions, including logconcave inverse demand

and weakly increasing costs, under which an isotone pure-strategy Nash equi-

librium exists in a duopoly with a¢ liation.

5Indeed, it is not di¢ cult to check that g has convexly increasing di¤erences in (x; t)
if and only if �g has concavely decreasing di¤erences in (x; t), so that the claim follows
from the �rst extension.

6See, e.g., Theorem 1.
7See also McAdams (2003), Van Zandt and Vives (2007), and Reny (2009).
8Indeed, Cournot pro�ts that are submodular imply Novshek�s (1985) marginal revenue

condition on inverse demand. The marginal revenue condition, in turn, can be seen to
be equivalent to inverse demand being a concave function of log-output. Hence, if inverse
demand is declining somewhere, it must eventually cause negative prices.
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Inverse demand is given by a nonincreasing function p, assumed to be

nonnegative, nonconstant, and logconcave.9 There are two �rms i = 1; 2,

each receiving a private signal ti, referred to as the �rm�s type, and drawn

from a compact interval Ti � R. Types are inversely a¢ liated, i.e., jointly
distributed according to some logsubmodular density on T1�T2. Each �rm i
produces output xi � 0 at costs Ci(xi; t), where t = (ti; tj) with j 6= i. Costs
are assumed nondecreasing and continuous in output. Moreover, marginal

costs are nonincreasing in own type and nondecreasing in the other �rm�s

type. Denote �rm i�s strategy by �i = �i(ti). Expected pro�ts of a �rm i of

type ti producing output xi read

fi(xi; ti) = E[xip(xi + �j(tj))� Ci(xi; t)jti]. (8)

It is claimed that fi satis�es the single crossing property in (xi; ti) provided

�j is monotone increasing. For this, write fi = gi + hi, where gi(xi; ti) =

E[xip(xi + �j(tj))jti] and hi(xi; ti) = �E[Ci(xi; t)jti], respectively, denote
expected revenues and (negatively signed) expected costs. To apply Theo-

rem 2, note that ex-post revenues xip(xi + xj) are logsubmodular in (xi; xj).

Hence, because �j is monotone increasing, xip(xi + �j(tj)) is logsubmodular

in (xi; tj). Therefore, with inversely a¢ liated types, gi is logsupermodular

in (xi; ti).10 Moreover, as p is nonincreasing, �j is monotone increasing, and

types are inversely a¢ liated, it follows that gi is nondecreasing in ti. Con-

sider now the cost term. By assumption, Ci(xi; t) is submodular in (xi; ti)

and supermodular in (xi; tj). As types are inversely a¢ liated, it follows that

hi is supermodular in (xi; ti).11 Furthermore, since costs are nondecreasing in

output, hi is nonincreasing in xi. Thus, fi satis�es the single crossing prop-

erty in (xi; ti) for any nondecreasing �j. Moreover, under the assumptions

made on inverse demand, revenue is declining when own output exceeds the

point of unitary elasticity. Hence, there is an output level above which no

�rm has an incentive to operate. It follows now from Corollary 2.1 in Athey

(2001) that an isotone pure strategy Nash equilibrium exists.

9Logconcavity of p requires that log p is concave on the interval where p > 0.
10See the discussion following Lemma 2 in Athey (2002).
11Cf. Fact (v) in Athey (2001, p. 872).
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