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Abstract

This paper investigates the asymptotic behavior of the t-ratio associated to an irrelevant variable in a three-variable
cointegration analysis. It is proved that the t-ratio converges to a hon-standard distribution suitable for statistical
inference. Although the test-statistic is not pivotal when the innovations are serially correlated, Monte Carlo evidence
suggests that the size distortion can be considerably mitigated by means of HAC standard errors.
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1. Introduction

The seminal concept of cointegration, first proposed by Geai(1981), Granger
and Weiss (1983) and Engle and Granger (1987), lead to argsipe development
of time-series econometrics. Following Stock and Wats@88), a cointegrated re-
lationship can be understood as the commonality of a stticltesnd amongst the
variables. It is relatively well-known that standard irdfece by means of t-ratios
and F statistics cannot be drawn from a least squares-estimatdhéreinafter)
cointegrated relationshﬂ)‘.l'here are, however, several alternatives to deal with this
issue and Fully-Modified LS (Phillips and Hansen 1990, RisIlL995) is certainly
one of the more important proposElshis methodology allows for statistical in-
ference throughout t-ratios anf statistics in cointegrated relationships. To the
best of our knowledge, little has been done in the study ofetsmkcified coin-
tegrated relationships. Moreover, the evidence is limitednly to Monte Carlo
experiments (Banerjee, Dolado, Hendry, and Smith 1986 r&aw O’Brien, and
Podivinsky 1994, Boswijk and Franses 1992, Cheung and L881Podivinsky
1998). A relevant exception can be found in Pashourtido®@320who studies
the—asymptotic—consequences of omitting a relevant bkria a Johansen coin-
tegration test; the latter willead to either no detection of cointegrating relation-
ships, if the true cointegrating rank is smaller than or ebjoahe number of omitted
variables [...] or the detection of < r cointegrating relationships/is the coin-
tegrating rank], if the true cointegrating rank is greater than the numbéomitted
variables’

In this paper we prove that statistical inference about ipeificance of the LS es-
timates associated to irrelevant variables in a cointegreggression can be drawn
by means of the associated t-ratios, provided that the etmavs are not autocor-
related. When the innovations happen to be serially caa@)atatistical inference
cannot be drawn since the test statistic is not pivotal amgpiwmwever, this can be
corrected—at least partially—simply by using Heteroslstiddy Autocorrelation
Consistent (HAC) standard errors.

The paper is organized in the following way: section 2 introgk the data generat-
ing processes (DGPs) we work with as well as the specificatbdthe regressions

1See, for example, Enders (2004), pp. 378-380.

2Fully-Modified LS may be succinctly described as the inansdf lags and leads of the first-
differenced explanatory variables as regressors. It waslojged in the context of a cointegration
estimation where the regressor is endogenous.

3pashourtidou and O'Brien (2003) also studied the effecthendbhansen test when irrelevant
variables are included; they conclude that inference atheutointegration rank is not affected.



under study. Section 3 develops the asymptotics for diffiesettings: (i) A three-
variable cointegrated relationship and an underspecifiedetthat excludes a rel-
evant variable; (ii) A three-variable cointegrated relaship and a correctly speci-
fied model that includes all the relevant variables, and;Aiitwo-variable cointe-
grated relationship and an overspecified model that insladerrelevant variable.
Monte Carlo evidence that supports our asymptotic ressiltisicussed. Section 4
concludes.

2. Data Generating Processes and Specifications

We begin our study by specifying the data generating presssithe variables. Let
x; andz; be generated as driftless unit roots:

vy = Xo+ & 1)
2y = Zo+ & 2)

where X, and 7, are initial conditions¢,,; = Zle Ui, ANduy,y (fOr w = x,y, 2)
is aniid white noise. We then define the cointegrated relationshgmir(3).

Yo =y + Byl Oyz + Uy (3)

On the one side, whei), # 0, z is therefore a relevant variable in the cointegrated
relationship. On the other side, whenis excluded (this is, when, = 0), this
variable is irrelevant. Note that the variablesandy; are always cointegrated. We
further assume that the practitioner may incluger not in his estimation exercise,
as marked in eqs.](5) and (4), respectively.

Yy = a+ PBr+w (4)
Yy = o+ Bry+ vz +uy (5)

3. Asymptotics and Monte Carlo Evidence

In this section we prove that statistical inference on thiereged parameter associ-
ated to an irrelevant variable in a three-variable coirgggn analysis can be drawn
by means of its associated t-ratio. This is done by studyiegsymptotics of a LS
regression with two and/or three variables (see éds. (4f@nhdwherer;, y;, andz;
are generated by eqs.] (1)) (2) ahdl (3), respectively (inabeDGP, the parameter
9, may be equal to zero or not). It is straightforward to showt tmaitting z; when
the variable is in fact a relevant one, biases the estimdtédsee—incomplete—
cointegrating vector:



Proposition 1 Letz,, 2, andy, be generated by eqd.] (1)) (2), amd (3) with# 0,
respectively, and use them to estimate specificalibn (4not@er and 5 the LS
estimates ofr and ¢ andt,, andtB their associated t-ratios. Then, d5— oo:

. d oo|fwe [wi—[we [wawz| | 1
Oz—>(5y [ fw,%*(fwa:)2 ],T 2t&20p(1)

N|—=

o T~

R LS = IR0

where-% denotes convergence in distribution;,, for w = =z, z, accounts for a
standard brownian motiony,,(r), and,O,(-) refers to the order in convergence.

Proof: see appendix A.

The results in Proposition 1 are rather intuitive. When thedet is underspeci-
fied (that is, when we omit a relevant variable), the coirdaggg vector is poorly
estimated; both estimates do not converge to their truesvaliis is in line with
Pashourtidou’s (2003) asymptotic results as well as wighMlonte Carlo evidence
obtained by Podivinsky (1998), who considers ﬂw:é(t:. .) all the test§Johansen,
Dickey-Fuller and Durbin-Watson] can be misleading when the estimated model
is underspecified because too few relevant variables aleded in the analysis”
Podivinsky (as well as Pashourtidou) was referring, howewethe obtention of
evidence of cointegration. Yet, by adding Podivinsky’sq8pMonte Carlo evi-
dence to our results, it could be said that, when the modehdenspecified, not
only the parameter estimates—associated to the coinéegvariables included in
the specification—will not converge to their true valueg, &so there is a serious
risk of finding no evidence at all of cointegration. Notwitdsding this, the ra-
tios associated to the relevant (cointegrated) variatilkslserge. If we were to
use standard critical values to test the null hypothesiodignificance, we would
eventually reject it for a sample size large enough.

On the other side, when we correctly specify the cointegradgression, correct
inference can be drawn:

Proposition 2 Letx,, 2, andy, be generated by eqd.] (1)) (2), amd (3) with# 0,
respectively, and use them to estimate specificalibn (5nofeey, 3, and4 the
LS estimates af, § and~, andtg, ts andt; their associated t-ratios. Then, as
T — oo:

4See Podivinsky (1998, p. 8).



where> denotes convergence in probability.

Proof: see appendix A.

Proposition§]1 and 2 point to the fact that omitting a relévaniable in the cointe-
gration equation flaws the statistical inference.

Furthermore, we prove that the inclusion of an irrelevamtalde does not entail
severe consequences (at least not when compared with tisequences in the
previous scenario of an omitted relevant variable). Thigigccordance to the
guidelines of the General-to-Specific specification-desigategy. Omitting rel-
evant variables is costlier that including irrelevant onBecall that Pashourtidou
and O’Brien (2003) proved that overspecification does rfetathe detection of the
cointegrating rank. The following proposition further pes that the cointegrating
parameters converge to their true value and the estimalbe gidrameter associated
to the irrelevant variable collapses at rédte':

Proposition 3 Letz;, z; andy, be generated by eqd.] (1]] (2), and (3) with= 0,
respectively, and use them to estimate specificalibn (5nofeey, 5, and~ the

LS estimates of, 5 and~, andi,, 5, andt; their associated t-ratios. Then, as
T — oo:

where:

1.7, = fwzdwy [(fwx)z — fwg] +fwmdwy [fwmfwz — fwmwz}
2. D= [w [(fwn) = f2|+(fw:)" Jui=2 fw. [w, [wwat(fww.)’
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Proof: see appendix A.

The results of Proposition 3, together with those of Prapmss 1 and 2, reinforce
the general conclusion of Podivinsky (1998, p.7Yntlerspecifying the possible
number of variables in the cointegrating vector(s) seemset@ risky strategy, as
it is more likely that if there are really more variables inetiCl [Cointegrating]
vector(s), these vectors may not all be detected, or no ksedtdected at all. Alter-
natively, possible overspecification of the number of eai¢variables generally is
likely to result in detection of (at least) the true numbe€b¥ectors. Our findings
complement those of Podivinsky and suggest that the irarusf such irrelevant
variables may be tested by means of their associated trati@ main result in
Propositiori B lies in the asymptotic expression for thetibrassociated tg. The
t-ratio, t5, converges naturally to a nonstandard, nuisance-paradfnetedistribu-
tion under the assumption that the innovations are statyoiid processes. This
allows us to regard it as a potentially useful test statistitest the null hypothesis
H, : 6, = 0. The asymptotic distribution has been non-parametricadlymated
(see figuréll). Note that these results were obtained undestumption ofid in-
novations in the DGPs. Figure 1 also depicts the estimatgdtstic distribution
when the innovations,; andu.,, follow an AR(1) proces@ The presence of auto-
correlation in the regressors’ innovations does not seeemtail severe distortions
of the asymptotic distribution of the t-ratio under the riufpothesis.

Critical values—assumingd innovations in the DGP af,—under the null hypoth-
esis have been therefore computed using the asymptotiessipn of the t-ratio
(Number of ReplicationsRk = 100, 000, see Tabléll).

Table I: Asymptotic critical values far;, under the null hypothesis

Level Critical Value Level Critical Value
0.01 +2.57 0.20 +1.28
0.02 +2.33 0.40 +0.84
0.05 +1.96 0.60 +0.52
0.10 +1.64 0.80 +0.25

The finite-sample evidence shows that autocorrelated airans in the regressors’
DGPs do not distort the level of the test. There is, howevegresiderable size
distortion when the innovations gf are notiid. Table [1l) in appendix B shows the
rejection rates of the t-ratio under the null hypothesisngba), as well as under the

°More preciselyiiy; = Guwtiw,i—1 + €wt forw =z, z, | ¢y [< 1andey; ~ N (0,02,,).
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Figure 1: Asymptotic distribution under the null hypottsesgi, = 0. Case 1 (area):
innovations ofz;, y, and z, areiidN (0, 1); Case 2 (grey line): innovations of
andz; are generated a$R(1) processesp, = 0.7, ¢, = 0.5; innovations ofy, are
itdN (0, 1). Number of replicationst0, 000. Sample size100.

alternative hypothesis (panel b). Nevertheless, a secomutdMCarlo experiment
reveals that the autocorrelation problem can be consitenaitigated if we use a
standard and well-known procedure; that is, if we computeCHtandard errors
(Newey and West 1987).

This procedure is analogous to the one a practitioner womlpl@y in a classical
LS regression where the variables are stationary and teereidence of autocor-
relation. In fact, similar size distortions using statipneariables have been docu-
mented by Granger, Hyung, and Jeon (2001), both, theollgtasad through Monte
Carlo experiments.

4. Concluding Remarks

This paper proves that statistical inference in a threek& cointegrating model
can be drawn by means of the t-ratios of the estimates. Wenelotehe asymptotic
distribution of the t-ratio associated to an irrelevaniaale as well as the order in
convergence of a relevant one. Critical values were tabdlat the former case.
Curiously enough, Monte Carlo evidence suggests that thielgm of autocorre-
lation in the specification can be controlled by employingGsgtandard errors, a
rather classical tool.



The results presented here could eventually ease the makstgtistical inference
in cointegrated relationships. It is known that undersijEtion may lead to the
failure in the detection of the cointegrating vector(s) istoverspecification should
help in the detection of such cointegrating vectors; owltesuggest that the inclu-
sion of an irrelevant variable in such a cointegrated systambe tested by means
of its t-ratio.

Appendix A: Proof of Propositions 1, 2 and 3

We present a guide on how to obtain the order in probabilityraposition 2. The
asymptotics of the remaining Propositions can be obtaigddllmwing these steps.
Let z;, z; andy; be generated by eqd.] (1) (2), afd (3) with= 0, respectively,
and use them to estimate specificatian (5). The expressested to compute the
asymptotic value of; statistic ard

1
T_%Zwt N crw/ Wy dr
0
. 1
A
0

T 1
T2 d d
T2y — 0504 WL, ar
0

t=1

o= uyT+Bnyt+6nyt+Op<T%>
Z Tyt = My Z Ty + Oy Z ﬁ + oy Z Tezt + Z Eai—1Uy; +O, (T%>
—_——

Op(T)

Zztyt = Myzzt+ﬁyzxtzt+5yzzt2+Z§Z7t_1uyt+0p <T%>

6All sums are fromr = 1 to T unless otherwise specified. = z, z.




and

Z ytZ = [y Z Y + By Z Yy + 0y Z 2ty + Z Ept—1Uyt + Z Eat—1Uyt

As for the stochastic sums, most results can be found inip$hilL986), Durlauf
and Phillips (1988) and Phillips and Ouliaris (1990).

The previous elements allow for the programming of all thesms required to
study the asymptotic behavior of the regression. Thedethematica™ —programs
can be downloaded from:

http://dl.dropbox.com/u/1307356/Arxius%20en%201a%20 web/Appendix EB/OmVar.pdf

Lower-order terms@,, (7"'/?), for instance) have been excluded in the expressions
because their inclusion blocks the execution of the code.


http://dl.dropbox.com/u/1307356/Arxius%20en%20la%20web/Appendix_EB/OmVar.pdf

Appendix B: Monte Carlo Evidence

Table II: Rejection rates of the test statistic: LS standardrs.
Panel (a)
Hypothesis Parameters Sample Size

J, Dar - p, 50 100 200 300 500

o 000 0.06 0.05 0.05 0.05 0.05

000,000 030 014 016 014 014 0.4

| 070 036 037 038 039 040

= 000 0.05 0.05 004 0.04 0.04
W 000 010020 030 013 014 014 016 015
2

0.70 035 0.39 041 0.40 0.38

0.00 0.04 0.05 0.04 0.04 0.04

0.50,0.60 030 014 013 0.16 0.14 014
0.70 0.35 0.41 039 041 040

Panel (b)

0.00 096 0.99 1.00 1.00 1.00

0.00;0.00 0.30 093 1.00 1.00 1.00 1.00
0.70 080 0.96 0.99 1.00 1.00

0.00 098 1.00 1.00 1.00 1.00

-0.50  0.10;0.20 0.30 097 1.00 1.00 1.00 1.00
0.70 0.88 0.99 1.00 1.00 1.00

0.00 099 100 1.00 1.00 1.00

0.50;0.60 0.30 099 1.00 1.00 1.00 1.00
0.70 0.97 1.00 1.00 1.00 1.00

0.00 100 1.00 1.00 1.00 1.00

0.00;0.00 0.30 1.00 1.00 1.00 1.00 1.00
0.70 0.99 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

050  0.10;0.20 0.30 1.00 1.00 1.00 1.00 1.00
0.70 099 100 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.50;0.60 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.00;0.00 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

1.00  0.10;0.20 0.30 1.00 1.00 1.00 1.00 1.00
0.70 100 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.50;0.60 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

10y # 0

Ha




Table Ill: Rejection rates of the test statistic: HAC stamlderrors.
Panel (a)
Hypothesis Parameters Sample Size

’ D2 P p, 50 100 200 300 500

o 000 011 010 0.08 0.06 0.6
0.00;000 030 0.6 012 009 0.10 0.8

| 070 027 023 019 016 013

= 000 012 010 006 0.07 0.06

W 000 010020 030 016 012 010 0.08 007

2

0.70 029 021 0.19 0.16 0.15

0.00 012 0.10 0.07 0.07 0.07

0.50,0.60 0.30 0.16 0.12 0.10 0.09 0.09
0.70 029 0.26 0.19 0.19 0.15

Panel (b)

0.00 097 1.00 1.00 1.00 1.00

0.00;0.00 0.30 094 099 1.00 1.00 1.00
0.70 0.76 0.94 0.99 1.00 1.00

0.00 099 1.00 1.00 1.00 1.00

-0.50  0.10;0.20 0.30 0.97 099 1.00 1.00 1.00
0.70 0.85 097 1.00 1.00 1.00

0.00 099 100 1.00 1.00 1.00

0.50;0.60 0.30 099 1.00 1.00 1.00 1.00
0.70 0.99 0.99 1.00 1.00 1.00

0.00 100 1.00 1.00 1.00 1.00

0.00;0.00 0.30 1.00 1.00 1.00 1.00 1.00
0.70 0.99 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

050  0.10;0.20 0.30 1.00 1.00 1.00 1.00 1.00
0.70 099 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.50;0.60 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.00;0.00 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

1.00  0.10;0.20 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00

0.50;0.60 0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

10y # 0
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