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Abstract

This paper used regional panel data for Chinese provinces from 1979 to 2003, and for Japanese prefectures from 1955
to 1998, to estimate the spatial externalities (or spatial multiplier effects) using a production function and Bayesian
methodology, and to investigate the long-run behavior of the spatial externalities of each country. According to the
estimation results, China's spatial externalities increased its domestic production significantly after 1994, which tended
to increase until 2003. Before 1993, however, its spatial externalities were not significant. Japan's spatial externalities
showed fluctuating values throughout the sample period. Furthermore, the movement of the spatial externalities was
correlated with Japan's business conditions: the externalities showed a high value in the economic boom, and a low
value in the economic depression. This could mean that spatial externalities correlate mainly with business conditions.

The author wishes to thank the referee for his valuable comments and suggestions.

Citation: Yoshihiro Hashiguchi, (2010) "Bayesian estimation of spatial externalities using regional production function: the case of China and
Japan", Economics Bulletin, Vol. 30 no.1 pp. 751-764.

Submitted: Oct 16 2009. Published: March 18, 2010.



1. Introduction

Over the past few years, concern about spatial externalities in the field of regional economics
has risen (Anselin 2003). Spatial externalities are the exteffesdts that spread over several
regions, implying that knowledge or ideas that improve the technology of production spill over
from one region to the other; thus technical progress in one region brings about an improvement
in productivity, not only in its own region, but also in other nearby regions. It seems natural
to assume that a regional economy is influenced to some extent by its spatial externalities. To
what extent do spatial externalities have #ie& on a regional economy? Are theffexts only

trivial or are they essential for regional economic growth? Therefore, to understand economic
growth it is important to measure quantitatively tigeet of spatial externalities.

Some studies have attempted an empirical analysis of regional economic growth that takes
account of spatial externalities. Ertur and Koch (2007) developed a spatially augmented Solow
model, by introducing spatial externalities into the traditional Solow model, and estimated the
impact of saving, population growth, and neighborhood on both real income and its growth
rate. They used the data from Penn World Tables version 6.1 (91 countries, 1960-1995; Heston
et al. 2002) and spatial econometric tools (Anselin 1988; 2001), and concluded that spatial
externalities were significant. In other studiegyd et al. (2004) Fingleton and bpez-Bazo
(2006)1 Olejnik (2008)1 and Pfafermayr (2009) each undertook an econometric analysis of
economic growth in Europe, using a version of the spatially augmented Solow model. Each of
these studies emphasized the importance of spatial externalities for economic growth.

The problem with the previous studies lies in the fact that few of these studies have attempted
to clarify the long-run behavior of spatial externalities. Kakamu et al. (2007) estimated Japan’s
production function including spatial externalities, and examined year-to-year change in spatial
externalities. They used Japanese prefectural panel data for the manufacturing industry from
1991 to 2000, and concluded that spatial externalities tended to decline and became insignificant
after 1993. However, it is hard to consider their examination as a long-run investigation of
spatial externalities as their study period was only 10 years.

There are no definitive answers to how the extent of spatial externalities behaves in the long
run as yet. In this paper, panel data for Chinese provinces from 1979 to 2003, and for Japanese
prefectures from 1955 to 1998, were used to estimate the production function with the spatial
externalities of China and Japan, respectively, and to investigate the long-run behavior of the
spatial externalities of each country. Section 2 of this paper explains the production function
including the spatial externalities. Section 3 discusses the Bayesian estimation method, and
Section 4 reports the empirical results.

2. Model

Let us consider a regional economy that produces output using capital and labor input, assuming
that its production technology is given by the following Cobb-Douglas form:

Yio = Ay KT explei) (1)

wherei andt denote a region and timé; is output, K is capital input,L;; is labor input,
Ay is the level of technologyy; is a parameter, ang; is an error term. To introduce spatial
externalities into the production function, we assume the existence of externalities related to the



technology level;, specifying it as follows:
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The terrr([—i)ptvw’ means that increasing the labor productivityj'sfregion (j # i) by 1% brings
about an improvement ofk; by pwi;%, and this term thus indicates the spatial externalities
or spatial spillover ffects between regionand its neighbors. The magnitude of the spatial
externalities is represented py Thew; indicates the neighbors of regionspecifyingw;; =
ci,-/zg“ Cj, wherecj = 1 if i andj are neighbors, and; = O otherwise. Theav; refers to the
standardized spatial weight ©Qw;; < 1).

The remainingy; and¢; are parameters, ardi is China’s coastal-inland dummy variable,
such that; = 1 if i € coastal regiong; = 0 otherwise? Consequently, the coastal and inland
technology levels are distinguished such that

A {yt St H}\'zl(z—ﬁ)ptwij i € coastal region
L=
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In the case of Japan, we suppose that O for all i.
Substituting Equation (2) for (1), dividing Ry, and taking logarithms yields the following
estimable equation:

N
Yiie =pt ) Wij Vit + Xit Br + &it (3)
j=1

wherey; = log(Yii/Li), Xi = [1, di, log (Kit/Lir)], andB; = [logy:, logé:, ai]’. Equation (3),
which is called a spatial lag model in the literature (Anselin 1988; 2001), is estimated using the
data of China and Japan, respectively.

In the vector and matrix notation, Equation (3) can be written as

Vi = pt Wyt + X Bt + & (4)
y=D,@W)y+XB+¢ (5)

wherey; = [Yit, Yats - - - Ynt) s Xt = [Xat, Xats - - Xned 5 Y = [Y1, Y2, - - -5 Y], and

X1 P1 W11 Wi ... Wy
X2 P2 Wop W22 ... Wy

X = . , D, = ' . W=
Xt %) WNn1 W2 ... WnNN

in whichW is referred to as the (row-standardized) spatial weight matrix. The reduced form of
Equation (4) is given by

Yi = (In = pW) X B+ (In — pW) ey (6)

DThe coastal regions are defined as the following 12 regions: Beijing, Tianjin, Hebei, Liaoning, Shanghai,
Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Guangxi, and Hainan. The inland regions are defined as the
following 18 regions: Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Sichuan,
Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.
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where (n — pW) ™2, like a Leontief inverse, can be expanded into an infinite sekjgs W +

Pp?W?2 +--.), which is known in the literature as the spatial multiplier (Anselin 2003). Equation

(6) implies that labor productivity in regionis afected, not only by the technology level and

the capital-labor ratio im, but also by those in all the other regions through the inverse term.
To measure the contribution of the spatial externalities (or the spatial multijiieats) on

the total production in a country, we defifig= Y Y; as the observed total output of a country,

andY, as the total output without the spatial externalities:

~ N ~
Yt = i Yit
_ ZN 6di Kozt Ll—ozt ]
- i Y10¢ Ko Ly exmglt}
N N
= Zi exp{log Lit + Vit — o ijlwij YJt}
and also define the flierence betweeW andY, as follows:

Y- Yo Y/Le- YL @)
Y, Yo/ L

GAP =

wherel; = ZiN L;; is the total labor input. Th&AP, indicates the magnitude of the spatial
externalities in total domestic production. In this way, by estimating Equations (3) and (7), and
describing the behavior gf; andGAR, it is possible to investigate the long-run behavior of
spatial externalities.

3. Bayesian Estimation

This section describes the Bayesian method of estimating Equations (3) and (7). Bayesian
methodology requires thegosterior densityto make an inference regarding the unknown pa-
rameters in a model. The posterior is proportional tolikelihood functiontimes theprior

density such ast(0 | y) «< f(y | 8) x n(6) , wherey is the data observed, is the unknown
parametersy(@ | y) is the posterior, and(y | 0) is the likelihood. The following subsections
explain the likelihood and the prior for our model, and show the computational scheme for
estimating the posterior.

3.1 Likelihood Function

Let us assume thatin Equation (5) has a multivariate Normal distribution, witleE€ 0 and
E(eg’) = Qnt. Then, the likelihood for our model can be expressed by

.
fY 1B.r.D,) = (2072 |Qur 2] ], 1IN —pW |
1 ;o (8)
X exp{—é [y— (DP®W)y— X,B] QN7 [y - (Dp ®W)y - X,B]}.
Since it is not feasible to estimate thdT x NT) matrix Qut with no restrictions, we specify

the covariance matrix as follows. Suppose dbllows AR(1) process

so=y&_1+1, 1~ N(OZy)



where|y | < 1, N() denotes a Normal distribution, ang, is a (N x N) diagonal matrix with
heteroskedasticity3, o3, . . ., 03). As a result, the covariance matrix can be specified by

E(eg') = (1 - y?) ¥ @ Iy

=Qr XN (9)
[ 1 /R L
W 1 v YT
Y= | ¥ ¥ 1 ...yt
w‘;—l lp‘é—Z w‘;—3 . 1

whereQ; = (1 - y?) ;. Substituting Equation (9) into Equation (8) yields the following
likelihood function:
_NT _N N e Al
Y 18,20, ) = 20 2 1Qr P10 72 | | 1In—pW |
1 S (10)
<exp{ 3|y - (0,0W)y - [ ot o3¢ [y - (0, W)y - x4}

As an alternative representation, and applying Prais-Winsten transformatieyt t&quation
(10) can be rewritten as

_NT 0N IrT’
fY 18,2 Dy ) = (1) 2 (L=yA)Z IZn 2 [ [ 1IN —pW]

1 T (11)
X exp{—5 [8’1(1 —yA)Ete+ ) (e — ) It e - wst_l)]}
whereg; = y;y — oWy, — X B fort=1,2,...,T.
3.2 Prior Density Function
Let us assume that the prior used in this paper takes the following form
w6, 3n.0,.9) = n(8) {[ |, 7D} {[ ], mte0} =) (12)

where

ﬂ-(ﬂ): ﬂl ~ N(bO’ 20), ﬂt+1 :ﬂt + U, U~ N(O, Zﬁ)
n(o?): o2 ~1G(i/2, we/2) (i=1,2...,N)
o) pe~U@G A4y (t=12...T)

7@): ¥~ TNgyin(Qo, 0o)-

IG() andU() denote a distribution of inverse Gamma and Uniform, respectivély,, <1
denotes a Normal distribution, truncated on the intervdl € < 1). The hierarchical prior
is introduced int@3 so that the behavior g follows a random walk process, implying th&t
has a stochastic time trend. Sintgis treated as an unknown parameter and requires its own
prior, we assume the prior &f; asX; ~ IW(vg0, Zs0), WherelW() denotes the inverse Wishart
distribution.

The prior parameters at®, Xo, voi, Wi, Amins Amaxs Jos aio, Vg0, aNdZgo. The Amin andAmay
indicate the smallest and largest eigen value o#the@nd we put a limit on the parameter space
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of pi, such ast.} < pi < A%, Which is a condition that guarantelds — oW | > 0. The other

prior parameters are assumed as follows:

bo=0, Xo=100% I,

vi=3, wi=001 (=12...,N)
0o =08, 0Jy=(0o/2)

vio =3, Ty =100% I

wherek denotes the number of rows gf Theo-fp0 is chosen so that lies in the positive area
with 95.4% probability, because we expect thdtas a relatively high positive serial correlation.

3.3 Posterior Density Function

Having clarified the likelihood and the prior for our model, we now explain the posterior infer-
ence procedure. As is well known in the econometric literature, particularly Bayesian econo-
metrics, the posterior inference can be carried out by the Markov Chain Monte Carlo (MCMC)
method. This method allows us to generate samples from the joint post@#idy,, Xy, ¥, 2 |
y) and the marginal posterior of each parameter. By using the samples generated by MCMC, it
can make a statistical inference about our posterior density.

The MCMC method requires us to draw samples fronftileconditional posterior for all of
the parameters, sucha@ | D,, 2n, ¥, 25, Y), (ot | B: Dy, Zns ¥, 25, Y), 1(EN | B, D, ¥, 25, Y),
n(y | B,D,, 2N, 2s,Y), andn(Zs | B,D,, 2, ¥, Y), WhereD_,, indicates the set of parameters
01,02, ..., p7 €xcept foro;. The method of generating samples from these full conditional dis-
tributions is discussed in Appendix B. For the estimatioG&P; (t = 1,2,...,T), we calculate
the posterior mean of., using the MCMC draws such that

g 1 R-Ro N N
Yi= R-Ry Zr:Ro+1 [Z| exp{log Lit + Yi —P§r) ijlwij th}] )

whereR is the number of MCMC replication&, is the length of burn-in period, arp{f) is the
sample from the marginal posterior distributiornpaf As mentioned in Appendix B, we sBt=
500000 andR, = 50000, and then 450000 replications are used to calcMjate= 1,2,...,T.
Hence, by replaciny; with Y; in Equation (7), we obtain the estimate®AR.

4. Estimation Results

This paper used the panel data for 30 Chinese provinces (Chongging is included in Sichuan)
from 1979 to 2003, and 46 Japanese prefectures (all except Okinawa) from fiscal years 1955 to
1998. The data description and source are reported in Appendix A. The estimation results are
shown in Figures 1-4.

4.1 China

As Figure 1 demonstrates, the magnitude of spatial externagitiesChina was 0.060 in 1979
and 0.183 in 2003. Thg, indicated a tendency to increase and statistical significant at 95%
credible interval, in the period 1994-2003. However, it was insignificant before 1993. This

2All computations were implemented wix version 4.04 (Doornik 2006).
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indicates that the spatial externalities have appeared since 1993, and have contributed to the
growth of China’s economy since then.

The posterior mean af;, which indicates the capital elasticity, was 0.336 in 1979 and 0.468
in 2003. The capital elasticity declined between 1990 and 1994, but it showed a tendency to
increase throughout the sample period, and the mean of the growth rate between 1979 and
2003 was 1.33%.The posterior mean of jegvas 0.046 in 1979 and 0.381 in 2003. The one
of log (y; 6;) was 0.368 in 1979 and 0.770 in 2003. Theandy, 6; represent the exogenous
technology level of China’s inland and coastal regions, respectively. These results indicate that
the coastal technology level is higher than the inland level over the sample period. In addition,
the mean of the growth rate ¢f is 1.70% (1979-90), 2.72% (1990-95), and -0.37% (1995—
2003). On the other hand, that gfé; is 1.65% (1979-90), 4.52% (1990-95), and -0.75%
(1995-2003). The exogenous technology growth rate from 1990 to 1995 is higher in the coastal
region than in the inland region.

Figure 2 shows the posterior mean®AR, Y, /Ly, andp; for China. China'sGAP, was
steadily increasing after 1992, the year in which Deng Xiaoping undertodobitern tourof
China. The value of the estimat&P, in 1992 was 0.101, and it reached 0.355 in 2003. These
results indicate that spatial externalities (or spatial multipli®eas) existed in the Chinese
economy in the 1990s, and significantly contributed to China’s rapid economic growth then.

4.2 Japan

Figure 3 shows Japan’s estimation results. The posterior mgamafs significant from 1960

to 1974 and from 1985 to 1991, and remained insignificant during the other periods. The
arithmetic mean of the estimatggdover the sample period was 0.105, and its minimum value
was 0.014 in 1956, and the maximum value was 0.200 in 1969. While Chipalsowed a
rising tendency in the 1990s, Japap/showed fluctuating values, and it was not constant over
the period studied.

The posterior mean af; in Japan was 0.554 in 1955 and 0.568 in 1998, and its arithmetic
mean over the sample period was 0.560. In comparison with that in China, capital elasticity
in Japan was higher and more stable throughout the sample period. The posterior mean of
logy; was -0.172 in 1955 and 0.080 in 1998. Japanended to increase from 1955 to 1975
(the mean of the growth rate was 1.79% in this period), and after 1975 it decreased slightly, or
remained almost constant. The mean of growth ratg ofrer the sample period in Japan was
0.56%, i.e., lower than in China.

Figure 4 displays Japan’s posterior mearG@#P;, Y;/L;, andp;. TheGAP, andp; showed
an increasing phase and a decreasing phase over the period studied. The value of the estimated
GAP,was 0.229in 1972, 0.049 in 1980, and 0.253 in 1988. The two phases are probably related
to the Japanese business cycle, bec&ssig showed a high value in the period of the economic
boom between 1965 and 19724nagi boormand between 1986 and 19 disei boonp but
decreased in the economic depression, due to th&iverises in 1973 and 1979, and to the
collapse of Japan’s economic bubble in 1991. Taking into account the behayicardG AP,
for both China and Japan, it may be assumed that spatial externalities correlate with business
conditions.

5. Conclusions

This paper used regional panel data for Chinese provinces from 1979 to 2003, and Japanese
prefectures from 1955 to 1998, to estimate the spatial externalities (or spatial multifditse
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using a spatial lag model and Bayesian methodology, and analyzed the long-run behavior of
spatial externalities in China and Japan. According to the estimation results for China, spatial
externalities significantly increased domestic production from 1994 onwards, and tended to
increase until 2003. Before 1993, however, spatial externalities were insignificant.

Japan’s empirical results also show that spatial externalities contributed significantly to in-
creasing domestic production. Furthermore, the magnitude ofiithet® was not constant over
time, but included two phases, in which they exhibited high and low values, respectively. It
seems that the movement of spatial externalities is correlated with Japan’s business conditions,
in such a way that the externalities have a high value in an economic boom, and a low value in
an economic depression. These findings lead us to presume that spatial externalities correlate
mainly with business conditions.
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Appendix A. Data Description and Source

China’s data set, oY, Ki;, andLj, is constructed as followsY;; is a provincial gross value
added (Unit: million yuan) in 1990 prices, obtained by

Yii = NYi1000X GDPI; (i=1,2,...,30;t=1979198Q...,2003)

whereNY, 1990 IS regioni’s nominal gross value added in 1990, &BPI; is a real GDP index

at constant prices of 1990, normalized suchGa3Pl; 1990 = 1. NY, 1990 IS taken fromChina
Statistical Year Boak GDPI; from 1978 to 1998 is available in Kato and Chen (2002) and
the remaining data, from 1999 to 2003, is obtained fi@hina Statistical Year BookKj is

a provincial capital stock at 1990 prices (Unit: million yuan), obtained from Hashiguchi and
Chen (2006)L;; is the number of provincial employed persons (Unit: 1000 persons), calculated
by Li = 0.5x (Lye: — Lyg 1), whereLye; is the number of persons employed at the end of the
year, taken from Kato and Chen (2002) for 1978 to 1998, and fronCthiea Statistical Year
Bookfor 1999 to 2003.

Japan’s data set is constructed as follo¥ysis the gross prefectural products at 1990 price,
obtained from th&keport on the Prefectural Accounts from 1955 to 19641955 to 1974, and
from the Annual Report on the Prefectural Accourbs 1975 to 1998 K;; consists of the sum
of the social and private capital stock at 1990 prices (Unit: million yen) [both figures from Doi
(2002)]. Lt is the number of employed persons, taken from Doi (2002) for 1955 to 1974, and
from theAnnual Report on the Prefectural Accoufds 1975 to 1998 (Unit: persons).

For the specification of the spatial weight mawik we used the notion of binary contiguity
(Anselin 1988, pp. 18-19), assuming that regipaad | are regarded as neighbocs (= 1) if
they have a common bord&r.

Appendix B. Full Conditional Posterior Density and MCMC Algorithm

The Appendix shows how to generate samples from the full conditional posterior distribution,
and the MCMC algorithm.

3)Since Japan consists of four main islands (Hokkaido, Honshu, Shikoku, and Kyushu), these islands do not
border on each other. However, as Kakamu et al. (2007) mentioned, they are connected by a bridge, tunnel, or
railway. We assume that Hokkaido neighbors on Aomori (in Honshu), Hyogo (in Honshu) neighbors on Tokushima
(in Shikoku), Okayama (in Honshu) neighbors on Kagawa (in Shikoku), Hiroshima (in Honshu) neighbors on
Ehime (in Shikoku), and Yamaguchi (in Honshu) neighbors on Fukuoka (in Kyushu). Hainan, which is an island
of China, is assumed to neighbor on Guangdong (on China’s main land).
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B1. Full Conditional Posterior of g

As mentioned in section 3.2, we have assumed that the behavggy, 8, . .., Bt follows a
random walk process: that is, a stochastic time trend. Let us now rg8ga8sl . .., Br as state
variables, and exploit a state-space representatioffitoeatly drawg from the full conditional
posterior. To derive the state-space form, we modify Equation (4), such that

Yi = X B + & (13)

wherey; = (In — pt W) i, which is given under the full conditional distribution. By applying
Prais-Winsten transformation, Equation (13) is reformulated as follows:

7= i i) g

where

— _{Vl—l/’2371 (t=

+nr (t=21,2,...T) (14)

Yi =

Vi — YY1 (t: 3,....T)
x&-‘“ Y2X, (t=
v (t = LT

MX :{O (t= 1)
X1 (t=23,...,T).

Then, the linear Gaussian state-space representation is given by

Eﬁt+1 I K ﬁ Ut
B | = [ t O 0]~ N(O, Q) t=12...,T) (15)
| Y; Xy O N
Gl (1] F" o) o
Bo 0[O0 O 0 0 X

Having formulated the state-space form, it is possible to exploit the simulation smoother, which
is known in the literature of time series analysis (Durbin and Koopman 2001), to draw the sam-
ple from the full conditional posterior ¢#. This paper used the simulation smoother developed
by Durbin and Koopman (2002), using the following procedure:

Algorithm of Simulation Smoother f@r

(i) Fort=12...,T,draw random variables andz from N(O, Qg), and use them to draw
Bt andy; through Equation (15), whey® is generated biN(bg, o). The realized random
variables are written bﬂ* = (B1.B5.....BF) andy™ = (V;*, V5", ... Y5

(i) Using the simulated;* and the real observeﬁ calculate the smoothlng estimategfof
such ag* = E@ I ZN,Zﬁ,yf+) andB = E(8 | N, Zg Vi)

(i) Calculatef = ,B + B - B*.

Consequentl)ﬁ follows the full conditional distribution gB. The calculation of the smoothing
estimates of8 was made byssfPack 2.ZKoopman et al. 1999), which is the packageQpt
version 4.04 programming language (Doornik 2006).
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B2. Full Conditional Posterior of py, (t=1,2,...,T)
The full conditional posterior gf;, (t =1,2,...,T) is given by the following form

1 R _ _
(ot | B, DopZn, ¥, Zg, Y) o< [ In — ptW | exp{—ﬁ(pt —Pt)z} I(/lmlin <pt < /lm%ax) (16)
ot

[(Wywysitwys)| ™ (t=1)
2 =3 [Wyy @+ Wy 2<t<T)
Wy Ztwyn)| (t=T)
62 - (Wy1)EHy1 — X181 - ¥ &) (t=1)
ﬁt = é'ﬁt . (W yt)/ZNl [(1 + l//z)(yt - Xtﬁt) - l//(8t_1 + 8t+1)] (2 <t< T)
62 - (Wyr)Zyr — X7 Br — ¥ &1-1) t=T).

wherel (41 < py < ;L) is an indicator function that is equal to 14f lies inside the interval
betweeni i andA;L, and is equal to O otherwise. Since the density is not standard, we use

the Metropolis-Hastings (MH) algorithm to draw a sample from Equation (16). The algorithm
takes the following procedure:
MH Algorithm forp, (t=1,2,...,T)
Suppose that is the number of times of MCMC sampling, and choose an arbitrary starting

valuep” (r = 0)

Pt :
(i) Drawp}, as a candidate gf”, from the candidate generating densiy; | o).
(i) Calculate an acceptance probabildtgo; , pﬁ“”).
(i) Set p" = pr with probability a(o;, p; ), and set” = p with probability 1—
* Zr—l)

a(pt,pr ).

As the candidate generating density, we expTdM%}n@ngx)(ﬁt,&tZ), which denotes a Nor-

mal distribution truncated on the intervgfl < p; < AL, and consequently the acceptance
probability results in

o (-1 _ IIn—pf W
alot, p )_mln{l,—_ .
. v =p W

B3. Full Conditional Posterior of y
The full conditional posterior o is given by

1

2
20 i

(Y | B, Dp, Zn, s, Y) o< AY) X exp{— (- ql)z} Iyl <1) (17)

wherel (|| < 1) is an indicator function that is equal to 1if | < 1, and is equal to 0 otherwise,
and

AW) = (1-y?)* exp{—% [0 wz)zalsl]}

T -1
2 _ ’ -1 -2

T
2 -1 )
01 =0y (thz EL1ZN &t T Ty QO) .
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The density is also not standard in the casg,odnd hence we use the MH algorithm described

above. We adopi(qs, ail) as the candidate generating distribution, and then the acceptance
probability takes the following form:

AW) }

(=1 — mi
a’w(w ,w 1) = m|n{1,m

B4. Full Conditional Posterior of Zy and X4

Lastly, the full conditional posterior afy, which is the diagonal matrix o, o3, . .., 03),
andX;, takes a form such as

o—?|ﬁ,Dp,¢,zﬁ,y~|G(

Vi = Vg + T

Wy = ((1 —y7)ef + Z:zz(é?it - ¢’8i,t—1)2) + wo

Vi Wi )

7,7 (i:1,2,...,N) (18)

25| B. Dy, Xnu 4,y ~ IW(Vﬁl’ Zﬁl) (19)
Vgl = Vo + T-1

21 = [Z:ll(ﬂwl - B)(Bri1 — Br) + ZE&]_l

wheres;; = it — pt Z;'\lzl Wij Vit — Xit Bt
B5. MCMC Algorithm

Now, we show the MCMC algorithm that obtains samples from the posterior distribution.

MCMC Algorithm

Suppose that is the number of times of MCMC sampling.

(i) Choose the arbitrary initial value for all parameters and set4.

(i) Repeat the following sampling:
Drawg® from (B | o V. p5 ... p¥ Y 2, p D, 500, y).
Draw o8 from z(oy | B0, p8 ™, o570, ..., pl™D, 507D =D, Eg‘l), y).
Drawp fromz(o, | B, p, p§ 7Y, ... pT D, 207V, pt 0,50 y).

DraWp(T” from (ot | B(r),p(lr),p(zr), . ,p(Tr)_l, Zf\r,_l), Y1), 2/(;—1)’ y).
Drawy® from z(y | B9, p. o9, ... p0. 2,20 y).
Drawx() from n(Sy | B.p1.05.. ... oY, w0, £{ 0. y).
Drawx from (S | B, o, p%. . ... o0, 20, v, y).

If r <R, setr =r + 1 and return to (ii). Otherwise, go to (iii).

(i) Discard the draws with the superscript= 1,2,...,R,, and save the draws with =
R+1LR+2...,R

In this paper, we tak& = 500000 andr, = 50000, and then 450000 replications are retained
and exploited to implement the posterior inference.
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