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1 Introduction

Goyal and Joshi (2006) apply the notion of pairwise stable networks
introduced by Jackson and Wolinsky (1996) to a model of free trade
network formation, and show that (i) every pairwise stable network
is either complete or almost complete (with all countries except one
forming direct links), and (ii) the complete network maximizes global
welfare. In this note, we use essentially the same model as their model
with four countries, and investigate which network is more likely to
be realized than others by considering a dynamic process introduced
by Jackson and Watts (2002).1

2 The model

There are four countries, each of which has one firm producing a ho-
mogeneous good. Each firm sells in the domestic market as well as
in the foreign markets. Let p = a − q be the inverse demand func-
tion in each market, where p is a price and q is a market supply. For
simplicity, we assume that the production cost is zero. If two coun-
tries are connected by a direct link, the transportation cost is zero. If
they are not directly connected, the per-unit transportation cost (=
tariff) is τ . Given a configuration of such a free trade network, the
firms compete in each market in a Cournot fashion. Each country’s
welfare is the sum of the consumer’s surplus in the domestic market,
the tariff revenue, and the total profit of the domestic firm. There are
eleven patterns of networks. Assuming that a > 4τ , the welfare of
each country in each network configuration is shown in Figures 1.

We assume that the formation of a link requires the consent of both
parties involved, but severance can be done unilaterally. Assuming
that each country is myopic, a network is pairwise stable (Jackson
and Wolinsky 1996) if (i) no pair of countries want to form a new link
between them, and (ii) no country wants to sever any single direct
link. Whether a particular network is pairwise stable and/or Pareto
optimal depends on the relative values of a and τ as shown Table 1.

Let N ≡ {1, 2, 3, 4} be the set of countries. For each pair i, j ∈ N ,
let ij denote the link between them. We do not distinguish ij and
ji. A network on N is a set of links. Let GN denote the set of all

1Iimua, Murakoshi, and Hokari (2007) conduct a similar exercise for a model of market
sharing agreements (Belleflamme and Bloch 2004) with three firms.
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Conditions on a and τ pairwise stable Pareto optimal
τ < 2a

19 (6) (3b), (3c), (4b), (5), (6)
2a
19 < τ < 2a

9 (6) (2b), (3b), (3c), (4b), (5), (6)
2a
9 < τ < 10a

47 (6) (2b), (3a), (3b), (3c), (4b), (5), (6)
10a
47 < τ < 6a

25 (3b), (6) (2b), (3a), (3b), (3c), (4b), (5), (6)
6a
25 < τ < a

4 (3b), (6) (2b), (3a), (3c), (4b), (5), (6)

Table 1: Pairwise stable and Pareto optimal networks.

networks on N . For each g ∈ GN and each i ∈ N , let ui(g) denote the
welfare of country i in network g, as described in Figure 1. For each
g ∈ GN and each ij ∈ g, let g − ij denote the network generated by
deleting ij from g. For each g ∈ GN and each ij ̸∈ g, let g + ij denote
the network generated by adding ij to g.

Let us consider the following discrete-time dynamic process intro-
duced by Jackson and Watts (2002). At each period t ∈ {1, 2, . . . , T},
two countries are chosen randomly. If they are already linked directly,
they can decide whether to keep the link or sever it. If they are not
linked directly, they can decide whether to form a new link between
them.2

Assuming that each country is myopic, one can compute the tran-
sition probabilities in each period (Figure 2). Also, assuming that the
process starts with the empty network, one can compute the probabil-
ity that each network is realized in the beginning of each period. For
each t ∈ {2, 3, . . . , T} and each g ∈ GN , let pt(g) denote the probability
that network g is realized in the beginning of period t. Then

pt(g) =
1
6

∑
ij∈g

[
pt−1(g − ij) + pt−1(g)

]
× AND (ui(g) ≥ ui(g − ij), uj(g) ≥ uj(g − ij))

+
1
6

∑
ij ̸∈g

[
pt−1(g + ij) + pt−1(g)

]
× OR (ui(g) > ui(g + ij), uj(g) > uj(g + ij)) ,

where AND and OR are functions such that for each pair of condi-

2Dutta, Ghosal, and Ray (2005) study an infinite-horizon dynamic process similar to
that of Jackson and Watts (2002) assuming that each player is farsighted. In their setting,
when a pair of players is selected, each of them has an additional option of severing existing
links with other players unilaterally. For simlicity, we do not incorporate such a feature
into our model.
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(3b) (6)
T = 10 0.389106 0.112912
T = 20 0.429438 0.472647
T = 30 0.429629 0.554233
T = 40 0.429630 0.567758
T = 50 0.429630 0.569948

Table 2: Probabilities with which networks (3b) and (6) are realized in the
final period when each country is myopic and 10a

47
< τ < a

4
.

tions A and B,

AND(A,B) ≡
{

1 if both A and B are true,
0 otherwise,

OR(A,B) ≡
{

1 if either A or B is true,
0 otherwise.

Let us assume that 10a
47

< τ < a
4
. Then (3b) and (6) are

pairwise stable. We can use the above dynamic process to see
which one is more likely to be realized. Table 2 summarizes the
result of computation. We can see that (6) is more likely to be
realized than (3b), but the probability with which (3b) is realized
is not negligible.

3 Subgame-perfect networks

Next, we assume that each country is farsighted in the sense that
each country maximizes the expected value of the sum of dis-
counted payoffs, with a common discounting factor β ∈ (0, 1].
Then the above dynamic process defines an extensive form game.
Assuming that T is finite, we use backword induction to find a
subgame-perfect equilibrium of this game. Although there are
many subgame-perfect equilibria, we are interested in the one in
which two countries form a new link whenever it is profitable for
both to do so.

For each t ≤ T , each g ∈ GN , and each i ∈ N , let V t
i (g) denote

a subgame-perfect equilibrium payoff to i in the subgame starting
from period t with network g. Note that for each g ∈ GN and
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each i ∈ N , V T
i (g) = ui(g). For each t ≤ T −1, each g ∈ GN , and

each i ∈ N , the Bellman equation can be written as

V t
i (g) = ui(g)

+
β

6

∑
jk∈g

V t+1
i (g) × AND

(
V t+1

j (g − jk) ≥ V t+1
j (g), V t+1

k (g − jk) ≥ V t+1
k (g)

)
+

β

6

∑
jk∈g

V t+1
i (g − jk) × OR

(
V t+1

j (g − jk) > V t+1
j (g), V t+1

k (g − jk) > V t+1
k (g)

)
+

β

6

∑
jk ̸∈g

V t+1
i (g + jk) × AND

(
V t+1

j (g + jk) ≥ V t+1
j (g), V t+1

k (g + jk) ≥ V t+1
k (g)

)
+

β

6

∑
jk ̸∈g

V t+1
i (g) × OR

(
V t+1

j (g + jk) < V t+1
j (g), V t+1

k (g + jk) < V t+1
k (g)

)
.

After solving these equations backwardly, assuming that the
game starts with the empty network, one can compute the prob-
ability that each network is realized in the beginning of each
period. For each t ∈ {2, 3, . . . , T} and each g ∈ GN , let πt(g)
denote the probability that network g is realized in the beginning
of period t. Then

πt(g) =
1
6

∑
ij∈g

[
πt−1(g − ij) + πt−1(g)

]
× AND

(
V t

i (g) ≥ V t
i (g − ij), V t

j (g) ≥ V t
j (g − ij)

)
+

1
6

∑
ij ̸∈g

[
πt−1(g + ij) + πt−1(g)

]
× OR

(
V t

i (g) > V t
i (g + ij), V t

j (g) > V t
j (g + ij)

)
.

Let us assume that a = 100, τ = 23, and β = 0.9. Then we
have 10a

47
< τ < a

4
so that (3b) and (6) are pairwise stable. As

we have seen in the previous section, if each country is myopic,
although (6) is more likely to be realized than (3b), the probabil-
ity with which (3b) is realized is not negligible. We would like to
know what happens if each country is farsighted. Table 3 sum-
marizes the result. We can see from the table that the probability
with which the complete network is realized becomes very close
to 1.3

3Excel files that are used to solve the Bellman equations are available from the authors
on request. These files and additional figures can be downloadable at
http://www.eco.osakafu-u.ac.jp/~shichijo/profile/network/network.html
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(3b) (6)
T = 10 0.062717 0.189043
T = 20 0.001338 0.818923
T = 30 2.34 × 10−5 0.969786
T = 40 4.07 × 10−7 0.995103
T = 50 7.06 × 10−9 0.999209

Table 3: Probabilities with which networks (3b) and (6) are realized in the
final period when each country is farsighted and (a, τ, β) = (100, 23, 0.9).

Since the number of networks is 26 = 64, the number of the
Bellman equations in each period is 4×64 = 256. However, since
the model is anonymous, there is a way to reduce the number of
“states” in each period to 20 by using the same argument as in
Iimura, Murakoshi, and Hokari (2007).4

4A list of the Bellman equations in this alternative approach is provided in the appendix,
which is downloadable at the webpage mentioned in footnote 3.
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Figure 1: The welfare of each country in each network.
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