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Abstract

In this paper, an empirical application of the generalized maximum entropy estimator in a stochastic production frontier
model with a translog specification is discussed to investigate technical efficiency in a wine region of Portugal. The
empirical results indicate technical progress over the time period of the sample and an increasing technical inefficiency
over time. All production units are technically inefficient, although wine cooperatives are less inefficient than private
firms.
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1. Introduction

In the last decade, the work of Golan et al. (1996) inspired the development of the Maximum
Entropy (ME) econometrics. The fundamental reason that explains the increasing interest on this
methodology was pointed out by Edwin Jaynes, cited by Golan et al. (1996) in the authors’ preface:
“in economics a truly well posed problem is virtually unknown”. Since ill-posed problems seem to
be the rule rather than the exception in econometrics, the Generalized Maximum Entropy (GME)
estimator has acquired importance in the wide group of econometric techniques. A review of the
ME formalism, with several contributions that have been emerging in the literature, can be found
in Golan (2002, 2007).

The stochastic frontier analysis (SFA) is central in efficiency measurement. The stochastic
frontier model has been proposed by Aigner et al. (1977), Meeusen and van den Broeck (1977)
and Battese and Corra (1977). In SFA, a functional form for the frontier production function must
be specified and a composed error structure takes into account the random error and a component
accounting for inefficiency. Details of SFA can be found in Kumbhakar and Lovell (2000) and
Greene (1993, 2001).

The purpose of this paper is twofold. The estimation of a stochastic frontier model with a
translog specification by the GME estimator, that is unusual in the efficiency analysis literature.
The analysis of technical efficiency is performed in the wine sector of the “Bairrada” region in
Portugal for wine cooperatives and private firms, in the time period 1993-2002.

In the estimation procedure, some issues need to be improved but the preliminary results in-
dicate a good performance of the GME estimator. It seems that this is a promising approach to
stochastic frontier models by avoiding distributional assumptions (only some restrictions in the
domains of random variables are needed in the optimization structure) and because the GME esti-
mator is not sensitive to collinearity. Note that collinearity is usual in SFA and is responsible for
inflating the variance associated with the regression coefficients, as well as affecting the signs of
coefficients.

The empirical results indicate that all production units are technically inefficient, yet wine
cooperatives are less inefficient than private firms. The results also indicate technical progress
over the time period of the sample and an increasing technical inefficiency over time, implying
production units are moving away from the production frontier.

The paper proceeds as follows. In section 2, the GME estimator is briefly presented. Descri-
ption of the data and discussion of the empirical model are presented in section 3. The empirical
results are discussed in section 4 and the final section concludes.

2. The GME estimator

Consider the following general linear model
y=XB+u ey

where y is the (N x 1) vector of observations on the dependent variable, 3 is the (K x 1) vector
of unknown parameters, X is a known (/N x K') matrix and u is the (N x 1) vector of random
errors. Given that the economic processes are typically stochastic and the available economic data
are often composed of limited and non-experimental observations, the usual economic models may
be ill-posed (Golan et al. (1996)). Given heed to this problem, Golan et al. (1996) specify a set
of support values for each unknown parameter and the error term and use the ME to estimate the
unknown probabilities associated with the support values, i.e, they transform the linear regres-
sion model such that the unknown parameters and the random unknown errors are in the form of
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probabilities. The random error vector is considered as another set of unknown parameters to be
estimated simultaneously with the coefficients 3. Golan et al. (1996) treat each [3; as a discrete
random variable with a compact support and 2 < M < oo possible outcomes and each w,, as a
finite and discrete random variable with 2 < J < oo possible outcomes. Assuming that both the
unknown parameters and the unknown error terms may be bounded a priori, the linear model in
(1) can be presented as

y = XZp + Vw, 2)
where -~
zy 0 ... O p1
pozp=| 0 2 VP
00 a | me

with Z a (K x K M) matrix of support values and p > 0 a () M x 1) vector of unknown weights,
and

vi 0 ... 0 Wy

0 v, ... O w
u=Vw= 2 . ? ,
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with V a (N x NJ) matrix of support values and w > 0 a (N.J x 1) vector of unknown weights.
The ME methodology is used to estimate the unknown p and w vectors that maximize

H(p,w) = —p'lnp —w'Inw, 3)
subject to the model constraint and the additivity constraints on p and w,
y = XZp + Vw,

1 = (Ix ® 1'm)p,
1N = (IN ® ]_/J>W,

where ® represents the Kronecker product. The GME estimator generates the optimal probability
vectors p and W that can be used to form point estimates of the unknown parameter vector (and
the unknown random errors).

The GME estimator generalizes the ME formalism of Jaynes (1957a,b), which uses the Shannon
(1948) entropy measure in the objective function. The Shannon entropy measure reflects the un-
certainty about the occurrence of a collection of events. Jaynes (1957a,b) proposes maximizing the
entropy, subject to the moment-consistency conditions and additivity requirements, to recover the
unknown probabilities that characterize a given data set. For further details of the GME estimator,
see Golan et al. (1996).

3. Data and the Empirical Model

The information collected on wine production units consists in five wine cooperatives and two
of the most important private firms in the “Bairrada” region in Portugal, in the time period of
1993-2002. Table I presents summary statistics of the data.

Output (Y) is measured by liters of wine produced. Four inputs are distinguished: labour,
grapes, energy and capital. The number of workers (L) is converted into annual working hours



Table I: Summary statistics of the variables.

variable \ \ mean | std. dev. [ maximum | minimum
Foundation year 1951 11.8 1962 1926
Workers 38 33.7 138 13

3022893 | 19784364 | 8663580 531260
2221314 | 14610629 | 6534195 432 000
46 851 63 996.7 252 455 6 562
94116 103 395.1 445 151 20727

Grapes [Kg]
Wine [liters]
Energy [Eur]
Capital [Eur]

= = =< Q| ~

for each production unit and the variable GG are kilograms of grapes used in the wine production.
Energy (£) is measured in constant prices of 1993 using the Torngvist-Theil index (Caves et al.
(1982)). Energy consists of electricity and oil. Electricity represents 70% of the energy costs and
oil represents 30%. The prices of electricity and oils are obtained from Energias de Portugal and
Direcgdo Geral de Geologia e Energia. The information available on capital (K) is very poor. The
capital variable is defined as a user cost of capital or an opportunity cost of capital'. Depreciation
is not considered in the user cost since there is no information on the different components of K.
Due to lack of information on the acquisition cost of equipment and the maintenance and repair
costs, the user cost of capital is calculated as the product of the stock of capital times the Treasury
Bond rate. Given the heterogeneity of the stock of capital and lack of information on the prices of
each component, the industrial producer price index is used to deflate the variable K. The industrial
producer price index is obtained from Instituto Nacional de Estatistica and Eurostat.

The panel data model used in this study is inspired on the model proposed by Battese and Coelli
(1995) and Puig-Junoy (2001). The stochastic production frontier model is defined by

Yi=f(Xist;op)exp(Viy — Up); Uy =240 + Wy 4

where Y; is the wine produced in time period ¢ by the production unit i, f(-) represents the
production technology, X;; = (G, Ly, Ei, Ki;) is the input vector for each production unit ¢ in
the time period £, ¢ is a time trend representing exogenous technical change (t = 1,...,10), oy
is a vector of unknown parameters, V; is a random error, U; is the nonnegative error component
representing technical inefficiency in production, z;; is a vector of explanatory variables associated
with technical inefficiency, ¢ is a vector of unknown parameters and W, is a random variable. In
the optimization program, it must be ensured that U, is nonnegative with W;; > —z;d. Note,
for instance, that V; is usually assumed to be i.i.d. random error that have a Normal distribution,
N(0,0%), and is independently distributed of the component U;;. Also, W, is usually defined by
the truncation of a Normal distribution, N (0, 02), such that the truncation point is —z;;8 (Battese
and Coelli (1995)). The usual distributional assumptions for V;; and W; are not used. We will
discuss below the assumptions for V;; and W; under the GME estimator.

Assuming a translog specification for the stochastic production frontier, the model in (4) can
be presented as

4 14 4
t? 1
Vit = oo + oyt + Qi + E i T 5 E E QnXjitX it + g Qi Xjirl +
=1 j=1

j=1 h=1

+Vie — (60 + 011t + 62Cyp + 93A: + W), (5)

'An alternative measure of capital (a stock measure) was also used in the empirical application. However, the
empirical results are qualitatively similar to the ones reported in this study.



where y and x represents the natural logarithm of wine produced and the natural logarithms of the
four inputs (5, h = G, L, F, K).

The inefficiency component specification includes three variables: two firm-specific variables
and time. The age of the production unit (/) is used as a proxy of experience and know-how. It is
expected that the higher the experience, the lower the inefficiency level. The variable C' (coope-
rative versus private sector) attempts to capture eventual differences in the degree of inefficiency
between the cooperative sector and the private sector. C' is equal to 0 if ¢ is a wine cooperative or
is equal to 1 if ¢ is a private firm. The variable A (year) allows for a time-varying specification of
technical inefficiency.

The stochastic production frontier model in (5) accounts for both technical change and time-
varying inefficiency effects. The time variable ¢ in the stochastic production function represents
shifts in the production technology. Technical progress (regress) occurs if the rate of technical
change is positive (negative). The year variable (A) in the technical inefficient component postu-
lates that inefficiency may vary linearly with respect to time.

The production frontier model in (5) can be defined as follows

Vit = Xiop — 20k + Vi — Wy (6)

where the vectors v and & are expressed by

M M
Q= E DPkmZkm and Oy = E Q' m/ Tk (7)
m=1 m/=1

with py,,, and g/, being the probability vectors to be estimated and zy,,, and ry/,,,» representing the
support values. We also define

N N’
/ /
Vit = E WitnVitn and Wit = E Witnt Vitn! (8)
n=1 n'=1

where w;;, and w!, , are the probability vectors to be estimated and v;;,, and v},,, are the support
values. The Chebychev’s inequality is used as a conservative means of specifying sets for the error
bounds. We adopt the usual 30 rule, where 0 = 0.68 represents the standard deviation of the
dependent variable. The 30 rule is not a very strong and restrictive assumption when used in the
context of maximum entropy (e.g., Golan et al. (1996) and Campbell and Hill (2006)). In general,
the number of the support values (M, M’, N, N') is arbitrary depending usually on computational
aspects. However, an increase in the number of the support values, keeping the distance among
them constant, decreases the variance of the uniform distribution. Since the estimation is not
usually improved by choosing more than five points in supports, we define M and M’ equal to
five, and V and N’ equal to three. As will be mentioned below, other numbers of the support
points were tested.

Maximum entropy is used to estimate the unknown parameters through the probability vectors
p, q, w and w'. The problem can be defined by the maximization of the following entropy function

21 5 4 5
H<p7 q,w, Wl) = - Z Z Pkm lnpkm - Z Z qr'm’ In qk'm’ —
k=1 m=1 k'=1m/=1
)
10 3 7
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_ 10 Wi — " nw
wltn n wltn wltn/ n U)Ztn/

i=1 t=1 n=1 i=1 t=1 n'=1



subject to
Vit = Xpop —Zygl0p + Vi — Wy

21 5 4 5
= E E pkmzkmxkit_g E Qk'm/ Tk'm! 2kt it +

k=1 m=1 k'=1m'=1 (10)

3 3
/ !
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n=1 n’=1
and

5 5 3 3
> P =10 Q=113 win =13 W, =LYk, it (11)
m=1 m/=1 n=1 n'=1

In this empirical application, there is not a “pure” ill-posed problem, as defined by Golan et al.

(1996), since the number of parameters does not exceed the number of observations. However,

in this study the condition numbers of matrixes X and z are high, which means that this is an ill-

conditioned problem. The GME estimator is suitable to this kind of problem since is not sensitive

to collinearity. It is well-known that collinearity is responsible for inflating the variance associated
with the regression coefficients and may also affect the signs of coefficients, as well as statistical
inference. Other estimators, such as Ridge Regression, Restricted Least Squares and Maximum

Entropy Leuven estimator, can also be applied.

4. Empirical results

The estimates (Est) obtained for the coefficients (Coef) of the stochastic production frontier
model in (5), using the GME estimator formalized in (9), are presented in Table II. Three different
intervals for the support values with different widths (Support) are used. The last two rows of Table
IT present the number of iterations (Nlter) and the value of the infinity norm of the residual vector
(Norm).

The stability of the estimates is verified and is in accordance with other experimental results
(e.g., Golan et al. (1996) and Campbell and Hill (2006)). Other support intervals and other number
of the support points not reported in Table II were used with similar results to the ones presented
in this table. Two reasons justify the choice of the support intervals presented in Table II: (1) these
intervals are consistent with the suggestions of Golan et al. (1996) for the case of minimum prior
information, and (2) the first support interval (Supportl) is consistent with the analysis of the mean
values of the variables employed by Lansink et al. (2000, 2001). In these preliminary results, the
infinity norm of the residual vector is used as an indicator of the quality of the estimation. Fol-
lowing Campbell and Hill (2006) we can use the percentile method to obtain confidence intervals
and evaluate the precision of the GME estimator. Alternatively, confidence intervals based in the
Normal distribution, after the estimation of the coefficients’ standard errors with 1000 bootstrap
data samples, were used to evaluate the estimates. All the parameters are significantly different
from zero at 1% significance level. We use an optimization program to solve the maximization
problem and all the statistics are computed by us. However, note that the GME estimator with
tests and statistics is already available in SAS and Limdep software. The confidence intervals and
standard errors are not given in this paper due to space limitations, but they can be obtained from
the authors upon request.

The estimated coefficients in the inefficiency model are also reported in Table II. The coeffi-
cient 0; associated with the variable I (age of the production unit) is negative suggesting that the



Table II: Estimated parameters of the model.

[ Coef || Estl | Supportl | Est2 \ Support2 [ Est3 ] Support3 \
@ 0.0414 | z=[-16,-8,0,8,16] || 0.0420 | = =[-8, —4,0,4,8] || 0.0422 | z =[-8, 4,0,4,8]
oy —0.1451 | z=[-16,-8,0,8,16] || —0.1160 | z = [~8,—4,0,4,8] || —0.1460 | = = [~8,—4,0,4,§|
Qi Z0.0053 | = —=[-16,-8,0,8,16] || —0.0053 | = =[-8, —4,0,4,8] || —0.0053 | = = -8, —4,0,4,8|
ac 0.0345 | == [-16,-8,0,8,16] || 0.2471 | = = [-8,—4,0,4,8] | 0.2474 | = =[-8, —4,0,4, 8]
ar 05020 | z = [—16,-8,0,8,16] || 03892 | = =[-8, —4,0,4,8] || 0.3898 | z =[-8, 4,0,4,8]
ar 0.5077 | == [-16,-8,0,8,16] || 0.3916 | = = [-8,—4,0,4,8] | 0.3960 | = =[-8, —4,0,4,8]
ax 04080 | z = [-16,-8,0,8,16] || 03240 | = =[-8, 4,0,4,8] || 03193 | z =[-8, 4,0,4,8]
[e7eTe! 0.0435 | z=[-16,-8,0,8,16] 0.0297 | z=[-8,—4,0,4,8] 0.0291 z=[-8,-4,0,4,8]
Qrr, —0.1933 | z = [—167 -8,0,8, 16] —0.1375 | z = [ 8,—4,0,4 8] —0.1364 | z = [—8, —4,0,4, 8}
apE || 00244 | 2=[-16,-8,0,8,16] || 00341 | 2 =[-8, 4,0,4,8] || 0.0328 | 2 =[-8, 4,0,4,8]
AKK 0.1266 | z = [—167 -8,0,8, 16] 0.1152 | z = [ 8,—4,0,4 8] 0.1160 | z = [—8, —4,0,4, 8}
acr 0.1073 | z =[~16,-8,0,8, 16] 0.0898 | z=[-8,-4,0,4,8] 0.0894 | z=[-8,—4,0,4, 8]
QGE —0.0492 | z = [—16, -8,0,8, 16] —0.0398 [ 8, —4, 0,4,8] —0.0386 | z = [—8, —4,0,4, 8}
agk || —0.0388 | z=[-16,-8,0,8,16] || —0.0305 | z=[-8,—4,0,4,8] || —0.0301 | z =[-8, —4,0,4,8]
aLe 0.0502 | z=[-16,-8,0,8,16] | 0.0302 | =z =[-8, 4,0,4,8] || 0.030L | z =[-8, 4,0,4,8]
ark || —0.0517 | z=[-16,-8,0,8,16] || —0.0544 | z=[-8,-4,0,4,8] || —0.0548 | z =[-8, —4,0,4, §]
AEK —0.0589 | z = [—16, -8,0,8, 16] —0.0499 [ 8,—-4,0,4 8] —0.0507 | z = [ 8,—4,0,4, 8}
acy 0.0186 | z = [—16,-8,0,8,16] 0.0148 | z = [~8,—4,0,4,8] 0.0142 | z=[-8,—4,0,4, 8]
Qrt 0.0120 | z =[-16,-8,0,8,16] 0.0079 =[-8,—4,0,4, 8] 0.0074 | z=[-8,—4,0,4,8]
an 0.0111 | z=[-16,-8,0,8,16] || 0.0097 | = =[-8, —4,0,4,8] || 0.0097 | z =[-8, —4,0,4,8]
axt || —0.0173 | z=[-16,-8,0,8,16] || —0.0125 | = — [-8,-4,0,4,8] || —0.0120 | z = |8, —4,0,4, §]
5o Z0.0414 | r = [-16,-8,0,8,16] || —0.0420 | 7 =[-8, 4,0,4,8] || —0.0236 | r = [-6,3,0,3,6]
5 —0.0088 | r=[-16,-8,0,8,16] || —0.0074 | r = |-8,-4,0,4,8] || —0.0073 | r = [-6,-3,0,3,6]
55 0.0266 | 7= [-16,-8,0,8,16] || 0.0267 | r =[-8, —4,0,4,8] || 0.0185 | r=[-6,-3,0,3,6]
53 0.1451 | r—[-16,-8,0,8,16] || 0.1169 | r = [-8,—4,0,4,8] | 0.0790 | » = [-6,—3,0,3, 6]
Nlter 12 iterations 7 iterations 7 iterations
Norm 0.4183 0.1369 0.1373

younger production units are more inefficient than the older ones. The coefficient d5 associated
with the variable C' (cooperative versus private sector) is positive meaning that wine cooperatives
tend to be less inefficient than private firms. However, the difference in the technical efficiency
values must be analyzed with some precaution since the panel includes only two private firms.
The empirical results for the inefficiency model also indicate an increasing technical inefficiency
over the ten-year period of the panel. This means that production units are moving away from the
production frontier. During the time period of 1993-2002, cooperatives faced difficulties in selling
their wine both in the national market and in the foreign markets, yet no information is available
for private firms.

Table III reports the output elasticities with respect to the inputs (E¢g, Er, Er and E), as well
as the returns to scale (RS) and the rate of technical change (TC), by year and by firms. Output
elasticities, RS and TC are computed at the mean values of inputs and output. The parameter
estimates used correspond to the support interval that provides the lowest value of the infinity
norm of the residual vector. The output elasticities are all positive implying that the marginal
product of each input is positive. The differences in the output elasticities of labour, energy and
capital suggest a different production structure for cooperatives and private firms and probably the
need of a different production frontier specification for each type of firms. The value of returns
to scale is, on average, greater than one for each year and increases over time from 1.66 (1993)
to 1.87 (2002). The values of TC in Table III indicate technical progress, since all values are
positive in every year of the panel. The inclusion of the time variable ¢ in the model (5) with linear,



quadratic and cross-product terms allows the rate of technical change to be decomposed into pure
technical change (o + «yt) and non-neutral technical change (D i a;X;it). The values of TC
reported in Table III include these two components.

Table III: Output elasticities, returns to scale and technical change by year and firms.

] Year [ Ec | EL | Eg [ Ex | RS [ TC |
1993 0.94 | 0.54 | 0.05 | 0.13 || 1.66 || 0.17
1994 0.98 | 0.59 | 0.05 | 0.09 || 1.71 || 0.18
1995 0.98 | 0.60 | 0.05 | 0.09 | 1.72 || 0.17
1996 1.01 | 0.63 | 0.06 | 0.05 || 1.76 || 0.17
1997 1.02 | 0.61 | 0.08 | 0.06 || 1.76 || 0.16
1998 0.96 | 047 | 0.13 | 0.14 || 1.70 || 0.12
1999 1.05 | 0.60 | 0.09 | 0.05 || 1.80 || 0.15
2000 1.05 | 0.59 | 0.11 | 0.05 || 1.81 || 0.14
2001 1.08 | 0.60 | 0.12 | 0.03 || 1.83 || 0.13
2002 1.11 | 0.63 | 0.13 | 0.01 || 1.87 || 0.13

Cooperatives || 1.02 | 0.62 | 0.06 | 0.08 || 1.79 || 0.15
Private firms || 1.00 | 0.47 | 0.27 | 0.01 || 1.68 || 0.16

The technical efficiency levels for the wine cooperatives and private firms are presented in
Table IV. The efficiency levels are computed as follows (Battese and Coelli (1995)):

TE; = exp(—Uy) = exp(—2zi0 — Wy). (12)

Results in Table IV indicate technical inefficiency for both cooperatives and private firms in
all years of the study, implying it is possible to increase the production of wine with the same
input factors given the production technology. The average value of the technical efficiency for
all production units is approximately 0.80. This means that, on average, the quantity of wine
produced is only 80% of the possible maximum amount, given the inputs used and the production
technology.

Table IV: Technical efficiency levels by year and firms.

| Year || Cooperatives | Private firms || Mean |

1993 0.82 — 0.82
1994 0.84 — 0.84
1995 0.82 0.73 0.80
1996 0.80 0.73 0.79
1997 0.81 0.82 0.81
1998 0.80 0.66 0.77
1999 0.81 0.77 0.80
2000 0.80 0.74 0.78
2001 0.81 0.72 0.78
2002 0.79 0.72 0.77

5. Conclusions

In this paper, we illustrate the application of the GME estimator to investigate technical effi-
ciency in the wine sector of the “Bairrada” region in Portugal, in the time period of 1993-2002.
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The GME estimator reveals a good performance in the estimation of the stochastic production
frontier model. The economic analysis indicates that all production units are technically inefficient
but wine cooperatives are less inefficient than private firms. The empirical results also indicate
technical progress over the time period of the sample and an increasing technical inefficiency over
time, implying production units are moving away from the production frontier.

Topics of future research include, in the estimation procedure, a comparison of the GME es-
timator with other traditional competitors under collinearity, improvements in the optimization
program with more flexible restrictions in the error terms, and programming other basic statistics
in addition to confidence intervals and coefficients’ standard errors. In the efficiency analysis, since
the differences in the output elasticities of labour, energy and capital suggest a different production
structure for cooperatives and private firms, and probably the need of a different production fron-
tier specification for each type of firms, this will be the subject of detailed study.
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