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Abstract

This paper extends Kreps and Scheinkman's 1983 result, which shows that a production capacity choice stage
followed by price competition yields the same outcome as a Cournot game, to a setting where capacity costs are
asymmetric.
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1. Introduction

Bertrand and Cournot-type models are standard tools in industrial organi-
zation, and usually yield very different results and policy recommendations.
In an important paper, Kreps and Scheinkman (1983) (hereafter referred to
as KS) show that the two models are related: for symmetric firms, a game
with a first stage in which firms choose production capacities, followed by a
second Bertrand competition stage with an efficient rationing rule, yields the
same outcome as the corresponding Cournot game.

However, this result is quite sensitive to the assumptions of the model. For
example, as shown by Davidson and Deneckere (1986) and Madden (1998),
it can only be extended to more general rationing rules if capacity costs are
high enough.

More problematic, Deneckere and Kovenock (1996) show that the KS
result no longer holds if costs are sufficiently asymmetric in the price com-
petition stage (from now on, we will call distribution costs - as distinct from
capacity costs - those costs that only depend on the quantity sold). In par-
ticular, in a KS setting with a suitably efficient firm, Cournot models tend
to underestimate the efficient firm’s incentives to choose a capacity above
its Cournot level (in order to price its competitor out of the market in the
following price competition subgame).

One could then think that Cournot models should be dropped whenever
cost asymmetry is an important issue. Deneckere and Kovenock (1996) and
Allen et al. (2000) present a way to deal with this problem and indeed
find results which differ from models using Cournot-type subgames when
the distribution costs are sufficiently asymmetric. However, their method is
quite sophisticated and could not be incorporated in most models without
making them intractable. Moreover, the KS result seems to hold when the
distribution costs are not too asymmetric, or when the capacity costs are high
enough. Consequently, it is important to understand under which conditions
the KS conclusions are valid.

In this note, we extend KS’s main result by showing that the unique
perfect equilibrium of a KS game with asymmetric capacity costs (and null
distribution costs) yields the corresponding Cournot outcome. KS show their
result for any equilibrium, not just perfect equilibria, but they provide a
proof which can not be directly extended to asymmetric capacity costs (in
particular Steps 2 and 3 of their proof, page 336). Restricting our attention
to perfect equilibria allows us to use their description of the price competition



subgame’s equilibrium to develop a specific proof holding in this case.!

2. The model

In this paper, we use the same assumptions (and notation) as KS, but allow
for capacity cost asymmetry. Two firms £1 and E2 simultaneously select
their production capacity x; and x5 in a first stage, and then compete in price
in a market for a homogenous product, in a second stage. The consumers’
demand function is D and the inverse demand function is P. This function P
is strictly positive, twice continuously differentiable, strictly decreasing and
concave on its support, which is taken to be a bounded interval [0, X) .

At the price competition stage, firms sell quantities according to the effi-
cient rationing rule. This amounts to assuming that the consumers with the
highest willingness to pay will first buy from the cheaper firm. Then, if this
firm cannot produce up to the quantity consumers are willing to buy at its
price, the residual demand goes to the other firm. Moreover, we assume that
capacity is costly. Firm 7 incurs a cost b;(z;) to set up a capacity z;. Each
cost function b; is assumed to be convex, twice-continuously differentiable,
and such that P(0) > b;(0) > 0.

The assumptions on P and b; ensure that a Cournot game with inverse
demand P and costs b; (resp. null costs) has a unique equilibrium that we
will denote (z7, 2%) (resp. (z*,2*)). Let r3,(.) (resp. 7(.)) denote the Cournot
best-response function for a firm with cost b; (resp. null costs). The function
R, defined by R(q) = r(q)P(q + r(q)), is the profit a firm with null costs
obtains in the Cournot game if it reacts optimally to the other firm’s choice
of quantity q.

3. The result

The only difference with KS’s model is that the capacity cost functions need
not be the same for both firms. Consequently, we can use KS’s description
of the subgame equilibrium of the price-setting stage as a function of the
production capacities chosen in the first stage:

Lemma 1 (Kreps-Scheinkman) There is a unique Nash equilibrium (possibly
in mized strategies) of the price competition subgame, and:

'Note that in the particular case of constant marginal capacity costs, and under slightly
different assumptions, our result could also be deduced from Allen et al (2000).
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e In Region I (where x1 < r(x3) and xo < r(x1)), both firms choose the
same price P(xq + x2) at the equilibrium, and firm i’s profit equals

Hf(a:l,a:g) = a:ZP(xl + LUQ) — bl(a:l)

e In Region IIA (where x1 > r(z3) and xo < x1), the profits of the firms
equal

(1, 22) = R(x2) — bi(21) and II5(w1, 22) = pra — ba(z2),

R(z2)

where p is the smallest solution of p = [ D)
= = min|z1,D(p

e In Region IIB (where x5 > r(x1) and x1 < x3), the profits of the firms
equal

[5(z1, 22) = R(21) — ba(w2) and I (x1, 22) = pr1 — bi(21),

R(z1)

where p is the smallest solution of p = s D]
= = min|z2,D(p

First, note that (x7,x3%), the equilibrium of the Cournot game with costs
b1 and bs, belongs to Region I. Indeed, it is clear that the Cournot best-
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response functions with costs b; and by, 74, (.) and 74, (.), are such that r(x) >
(), for any x.

Interestingly, if the firms’ capacities (x1, z2) belong to I, the firms’ profits
are the same as Cournot profits (considering capacities instead of quantities),
and firms thus have incentives to behave locally as in a Cournot model.
Thus, if there is a perfect equilibrium with capacities in Region I, then these
capacities must equal (z}, r5).?

If the firms’ capacities (x,z3) belong to Region IIB, the firm with the
highest capacity, firm 2, receives exactly the same expected revenue R(x;)
whatever its capacity xo. Thus, the interior of the Region IIB can be thought
of as an area where firm 2 overinvests in capacity that does not increase its
revenue. As capacity is costly, it is clear that firm 2 has no incentive to
choose a capacity inside Region IIB. The same is true for firm 1 in Region
ITA.

This proves that if we have a perfect equilibrium, it must either involve
capacities (z7,x3) , or capacities on the frontier between Region ITA and IIB
(included in the line x5 = x1). In fact, it is easy to rule out the second option:

Lemma 2 Any perfect equilibrium of the game involves capacities (x7,x3) .
Proof. Consider that firm 1 has chosen a given capacity r1 > x*. If firm 2
chooses a capacity x2 = T1, then its profit R(x1)—ba(x2) is equal to 2 R(xs)—
ba(x2). Now, if firm 2 decides to choose a slightly lower capacity xt, = 71 — ¢,
so that (x71,2%) belongs to Region IIA but still verifies xf, > x* (which is
the case at least locally for small ), then firm 2 receives a profit equal to
pry — by(xy), which is higher than %R(azé) — by().> KS have shown (page
332) that the function xR(x) is strictly decreasing whenever r(x) < x, which
ensures that %R(:ﬂ?) — by(wh) > 2 R(w2) — ba(w2).*

Thus, there can no perfect equilibrium with capacities on the frontier between
Region ITA and IIB. =

2Indeed, under our assumptions the function z; P(x; + x2) — b;(z;) is concave in z;.
This implies that for a given capacity of firm j, and as long as (z1,22) belongs to Region
I, firm ¢’s profit is increasing when x; gets closer to 74, (x;). So, if (x1,22) # (x7,x3), at
least one of the firms can improve its profit by choosing another capacity in Region I.

*Note that p = —min}[i(:zD) =) %mz)
R(zz)

Z1
Since 7 is strictly decreasing, zo > z* implies that r(zq) < r(z*) = 2* < 2.

implies 1 > min [xl,D(E)] = , or equivalently p >



When Cournot capacities (z7, 2%) belong to the third quadrant relative
to (z*,x*), as is the case when capacity costs are symmetric, the existence
of a unique perfect equilibrium is obvious. Considering firm 2’s situation
for example, as x < x*, possible deviations from (273, x3) either remain in
Region I, where the firms have incentives to behave as Cournot competitors,
or lead to Region IIB, in which we have seen above that firm 2 had no interest
to choose its capacity.

The reason why our result is not obvious for asymmetric capacity costs
is that, when x7 > z*, if firm 1 chooses capacity x7, then according to firm
2’s choice of xq, capacities (27, x2) may lie in Regions I or I1IB as before, but
also in Region ITA (see Figure 2 below). In this region, it is not clear, a
priori, whether firm 2’s profit is lower than with x5 = 2% or not. Proposition
3 shows that this is the case and thus proves our result.

Proposition 3 There is a unique perfect equilibrium in this game. In the
equiltbrium path, firms choose production capacities equal to standard Cournot
quantities (x73,x3) then post a price equal to P(xy + x3), and receive the
Cournot profits.

Proof. Suppose that x7 > x* and that firm 1 chooses a capacity z7.

As a7 < r(z3) < r(0), whatever capacity xo firm 2 chooses in Region
IIA, firm 2’s profit will be equal to II5(x},x2) = pry — by(wa) = %&m) -
ba(x2). Indeed, there exists a positive number L such that the function f(p) =
pmin [z, D(p)] increases on [0, L], decreases on [L, P(0)] and equals px; on
[0, L], so that the smallest solution of pmin [}, D(p)] = R(zs) is the solution
of pr} = R(x3).°

Deriving firm 2’s profit on Region IIA with respect to xo gives

oty , R(x9) + zo R (v2) — 27t (x2)
8—(3?17332) = *
L9 Xy
R(x3) 4+ xo R (x2) — 1(x2)bh(22)

*
Ty

< as xy > r(xs).

Since R/ (x2) = 1(22) P (za+7(22))+1" (22)% [P (22 + 1(22)) + 1(22) P’ (22 + 1(22))],

/

~~
=0

®The demand for the price P(r(0)), which maximizes pD(p), is equal to 7(0), and this
demand r(0) is higher than x}. Consequently, f(p) is first increasing and equal to pz7,
then decreasing and equal to pD(p).
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Figure 2:
we then have
a_HI?)(x»{’ ) < R(x2) + zor(z2) P’ (22 —*F r(z2)) — r(w2)bh(22)
8372 T
< 7(22)(P(xo + 1(22)) + 22 P (29 + 7(22)) — by(2)) (1)
J— a’;?{ .

As the derivative of firm 2’s Cournot profit with respect to xo, P(xy+ x1) +
xoP'(xy + x1) — Uy(x2), is mon-positive when xo > 1p,(z1), and as o >
Ty, (T(22)), then inequality (1) implies that®

ot

07 (27, 22) <0.

Consequently, as firm 2’s profit function is continuous on its capacity o,
its best response to x7 is in Region I and is therefore x%.

bIndeed, if z5 > x4, then Tb_;(.’L'Q) < r(zq), as the corresponding part of the "long-run"
Cournot curve x; = 1“{21 (z2) lies in Region I. This proves that x5 > 7y, (r(x2)), since 7y,
is decreasing.



A symmetric argument for firm 1 concludes the proof. m

4. Concluding Remarks

This proposition extends the number of situations in which a Cournot model
may be seen as appropriate. As shown by Deneckere and Kovenock (1996),
KS’s result does not hold when distribution costs are asymmetric enough,
since when an inefficient firm chooses its Cournot capacity, the efficient firm
may have an incentive to choose a capacity above its Cournot capacity and
then flood the market in the price competition stage. This is no longer
a problem when distribution costs are symmetric at the price competition
stage and capacity costs are asymmetric.

One of the main features reported to support the use of Cournot for indus-
tries with symmetric firms is that the prices are easy to adjust as compared
to the production capacities. Very-easily-adjusted prices usually means that
most of the costs are sunk at the price-setting stage, so that the remaining
costs are fairly symmetric at this point. Consequently, this note conveys a
similar message for industries with asymmetric firms.
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