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Abstract

This paper incorporates imperfect divisibility of money in a price game where a given
number of identical firms produce a homogeneous product at constant unit cost up to
capacity. We find necessary and sufficient conditions for the existence of a pure strategy
equilibrium. Unlike in the continuous action space case, with discrete pricing there may be a
range of symmetric pure strategy equilibria - which we fully characterize - a range which
may or may not include the competitive price. Also, we determine the maximum number of
such equilibria when competitive pricing is itself an equilibrium.
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1 Introduction

In theoretical work on strategic price setting in a homogeneous product in-
dustry, the price is customarily viewed as a continuous choice variable. This
is an analytical simpli�cation since there is in fact a minimum currency de-
nomination (e. g., a cent). Interesting results have been achieved by incor-
porating discrete pricing in models of price competition. Consider �rst a
setting where the �rm output is demand determined. If the �rms produce at
the same constant marginal cost, then, besides the Bertrand solution (where
the �rms play a weakly dominated strategy), it is also an equilibrium for the
�rms to charge the lowest feasible price above marginal cost (Harrington,
1989). Discrete pricing has also been incorporated in models where average
total cost is decreasing (due to a �xed and avoidable cost). Two results have
been provided for the duopoly as the minimum fraction of the money unit
converges to zero. In a symmetric duopoly, the equilibrium of the price game
converges to the contestable outcome - average-cost pricing by a single pro-
ducer (Chaudhuri, 1996). If instead one �rm has an absolute cost advantage,
then limit-pricing emerges at a perfect equilibrium (Chowdhury, 2002).
Discrete pricing is also relevant for the existence of pure strategy equi-

librium (henceforth, PSE) in Bertrand-Edgeworth games. This line of re-
search has been pursued by Dixon (1993) and more recently by Chowdhury
(2008) under strict convexity of costs, a setting where a PSE does not exist
in the continuous-action space version of the game (Tirole, 1988, p. 214).1

Assuming the �rms to choose �rst price and next output (each �rm pro-
ducing the minimum between its competitive supply at the set price and its
forthcoming demand), a su¢ cient condition is established by Dixon for the
existence of PSE under e¢ cient rationing, a condition that holds in a su¢ -
ciently large industry. Chowdhury (2008) focuses mainly on a simultaneous
price and quantity game. For a large class of rationing rules, he proves that,
with su¢ ciently many identical �rms, all �rms charging the lowest feasible
price above the competitive price 2 is the unique symmetric PSE.
With continuous prices, existence of PSE is also problematic when unit

cost is constant up to capacity (Vives, 1986). We incorporate discrete pric-
ing in this setup, assuming symmetric oligopoly, e¢ cient rationing, and a
decreasing demand meeting a concavity condition. Section 2 �nds necessary

1On the other hand, a PSE would always exist if the �rm met the whole of its forth-
coming demand (Dastidar, 1995).

2Competitive price is identi�ed with marginal cost at zero output, c0(0). This iden-
ti�cation relies on the following argument. Let there be n < 1 price-taking potential
entrants. Under strict cost convexity, there will be n active �rms, and the competitive
price will converge to c0(0) (under perfect divisibility of money) as n increases.
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and su¢ cient conditions for existence of a PSE and multiplicity of symmetric
PSEs. The �ndings can be summarized as follows. A pivotal role is played
by the highest uniform price that is not worth undercutting (p�): this is
at least as high as the competitive price (pw). If competitive pricing is an
equilibrium, then there are multiple symmetric PSEs so long as p� > pw, any
uniform price from pw to p� being a PSE. If instead competitive pricing is not
an equilibrium, then p� is de�nitely higher than pw and a PSE will exist if and
only if a unilateral price increase is unworthy at market price p�: then the set
of symmetric PSEs will include any uniform price from p� down to the lowest
price at which a unilateral price increase is not worth it. Section 3 clari�es
the role of the size of the market and the minimum currency denomination.
As to the former, we derive - from an industry where a PSE does not exist -
a family of larger industries by applying Dixon�s (1993) "replication" proce-
dure. In a su¢ ciently large replica industry, all �rms charging p� becomes a
PSE and, with further increases in the industry size, the range of symmetric
PSEs extends downwards to include competitive pricing. As to the minimum
currency denomination (�), if competitive pricing is not an equilibrium with
continuous pricing, then no PSE exists with discrete pricing either, provided
� is su¢ ciently small. A second result relates to the case where there are
several symmetric PSEs including competitive pricing. As � decreases, the
number of symmetric PSEs converges to a well-de�ned maximum while the
price converges to pw at any equilibrium. Section 4 brie�y concludes and the
Appendix contains most of the proofs.

2 The model

Each of n �rms produces a homogeneous good at constant unit cost (nor-
malized to zero) up to capacity q = Q=n, where Q is total capacity. R+

and I+ = fkg are the sets of non-negative reals and integers, respectively.
Demand and the inverse demand function are D(p) and P (Q), respectively,
Q being total output. In the real domain, we take D(p) to be twice contin-
uously di¤erentiable with D(p) = 0 for p � p, and D(p) > 0; D0(p) < 0
and pD(p) weakly concave for p 2 (0; p). We denote by D0(p�) the derivative
of D at some speci�ed price p�. The set of feasible prices is fk�g; � > 0
being the minimum currency denomination. The competitive price (pw) is
0 if D(0) � Q and P (Q) if D(p) > Q for p small enough. (In the latter
case, we let P (Q) 2 fk�g, so that a competitive equilibrium exists.) In the
price game the �rms choose prices, whereupon the buyers make purchas-
ing decisions. There are no costs to buyer mobility, hence a higher priced
�rm receives no residual demand unless the capacity of lower priced �rms is
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fully utilized. �i(pi; p�i) denotes �rm i�s payo¤ at strategy pro�le (p1; :::; pn)
and �i(p0i; p�i) its payo¤ if deviating to p

0
i. Symmetric pure strategy pro�les

(p; :::; p) are referred to as p and i�s associated payo¤ as �i(p). Demand is
equally split among equally priced �rms, hence �i(p) = pD(p)=n for p > pw.
Note that, with pw > 0, �i(p) = pq at p 2 [0; pw]. We let p = maxfp1; :::; png;
H = fi : pi = pg, and #H = n. Rationing is according to the e¢ cient
rule: thus �i(pi; p�i) = piminfq;maxf0; D(pi)�#fj:pj<pigq1+#fs 6=i:ps=pig gg and, for i 2 H,
�i(pi; p�i) = pminfq;maxf0; D(p)�(n�n)qn

gg. Note that p[D(p) � (n � 1)q] <
�i(p) for p > pw. With P ((n � 1)q) > 0 and pD(p) strictly concave, we
let ep� = argmaxp2R+ p[D(p) � (n � 1)q] and e�� = ep�[D(ep�) � (n � 1)q]: in
fact, then ep� is the unique solution to d[p(D(p) � (n � 1)q)]=dp = 0.3 In
contrast, if pD(p) is linear - i. e., D(p) = (�=p) � � (with �; � > 0) for
p � �=� - then d[p(D(p)� (n�1)q)]=dp = �� for any p > 0. Further, we letep = argmaxp2fk�g p[D(p)� (n� 1)q] and e� = ep[D(ep)� (n� 1)q]. Obviously,ep is within �� of ep�.
It is easily seen when competitive pricing is an equilibrium.

Proposition 1 (i) pw is an equilibrium i¤

(pw + �)
�
Q�D(pw + �)

�
�q

� 1; (1)

which can be written

(n� 1)q � D(�) if pw = 0: (2)

(ii) In the continuous action space case (� = 0), pw is an equilibrium i¤

�pwD0(pw)

q
� 1 if pw > 0; (1�)

and
(n� 1)q � D(0) if pw = 0. (2�)

Proof. (i) (1) derives from pwq � (pw + �) [D(pw + �)� (n� 1)q], which
is necessary and also su¢ cient, by concavity of pD(p). (ii) Similarly, (1�)
derives from d

dp
[p(D(p)� (n� 1)q)]

p=pw
(+) � 0; (2�) is obvious.

Remark 1. (i) (10) and (20) are slightly stricter than (1) and (2), respec-
tively: thus, if pw is an equilibrium with � = 0, a fortiori it is so with � > 0.
(ii) One can say that, with � > 0, pw is not an equilibrium if and only
if e� > �i(p

w), which in turn requires that e�� > �i(p
w) (or, equivalently,

3D(p)� (n� 1)q + pD0(p) is positive at p = 0 and negative for p su¢ ciently large.
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ep� > pw). (iii) It can easily be checked that if pD(p) is linear, then pw > 0
and pw is an equilibrium ((1�) holds).

With � = 0, no p > pw can be an equilibrium: by in�nitesimally un-
dercutting, the �rm�s output jumps up and pro�t increases since the fall
in revenue per unit is negligible. With discrete pricing, for any p > pw

let ��ij�pi(p) be the change in i�s pro�t if deviating from p by �pi. For
p 2 [P (q) + �; p], ��ij�pi=��(p) = (p � �)D(p � �) � (pD(p)=n); which is
positive at p > �. Also, a unilateral price increase leads to zero pro�t when
D(p+�pi) � (n� 1)q. Here are further results on ��ij�pi(p).
Lemma 1. (i) With p 2 (pw; P (q) + �], ��ij�pi=��(p) is increasing in

p. (ii) If ��ij�pi=�(p
w) � 0, then ��ij�pi(p) < 0 for any �pi > 0 and

p 2 (pw; p).
Proof. (i) ��ij�pi=��(p) = (p� �)q � [pD(p)=n]; which is increasing in p.
(ii) The statement is obvious if pw = 0 since then (n� 1)q � D(�) in the

stated circumstances. If pw > 0, then d
dp
[p(D(p) � (n � 1)q)]p=pw+� < 0 in

the stated circumstances. Thus the statement follows straightforwardly, by
concavity of pD(p) and since D(p)� (n� 1)q < D(p)=n at any p > pw.
One necessary condition for p > pw to be an equilibrium is that at p it

does not pay to undercut. ��ij�pi=��(p) � 0 i¤ (p� �)q � pD(p)=n; i. e., i¤

p � �Q

Q�D(p)
: (3)

Let p� be the highest p 2 fk�g \ [pw; P (q)] meeting (3) and let bp� 2 R+

solve (3) as equality over the range [pw; P (q)]: Of course, bp� > pw and p� =
fk�g \ (bp� � �; bp�]. We have the following result on p�.
Lemma 2. p� � � when pw = 0; with p� � 2� i¤ Q � 2D(2�); p� � P (Q)

when pw = P (Q) > 0; with p� � pw + � i¤ Q�D(pw+�)
D(pw+�)

pw

�
� 1:

Proof. With pw = 0, p� � 2� if 2 � Q

Q�D(2�) ; i. e., Q � 2D(2�); while p
� = �

if Q > 2D(2�). With pw > 0, p� � pw + � if (3) holds at p = pw + �, i. e.,
Q�D(pw+�)
D(pw+�)

pw

�
� 1; if not, then p� = pw.

We can now address equilibrium multiplicity when pw is an equilibrium.

Proposition 2 Let pw be an equilibrium. Then: (i) the set of symmetric
PSEs is made up of any p : p 2 fk�g\ [pw; p�]; (ii) if pw = 0 there are further
symmetric PSEs besides 0 and � i¤ Q � 2D(2�); if pw > 0 there are further
symmetric PSEs besides pw i¤ Q�D(pw+�)

D(pw+�)
pw

�
� 1:

Proof. (i) Since ��ij�pi>0(p
w) � 0, by Lemma 1 any price increase is

unworthy for any p > pw. Undercutting is also unworthy for any p 2 [pw; p�].
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(ii) This follows from Lemma 2.
Examples. 1: D(p) = 50:4 � 12p; n = 24, q = 2; � = :01. Then pw =

:20, and pw is an equilibrium ((1) holds); p� = :32, hence any p : p 2
f:20; :21; :::; :32g is a PSE. 2: D(p) = 60� 10p; n = 10, q = 2; � = :01. Then
pw = 4; pw is an equilibrium and a unique one since p� = 4.

A PSE may exist even when pw is not an equilibrium. Before seeing this,
two points must preliminarily be made. First we have

Lemma 3. With p < p and ��ij�pi=��(p+ �) � 0, ��ij�pi=�(p) < 0.
Proof. In the Appendix.
Secondly, when pw is not an equilibrium, undercutting is de�nitely un-

worthy for p close enough to pw.

Lemma 4. Suppose pw is not an equilibrium. Then: (i) p� 2 [pw +
�; P (q)]; (ii) p� 2 [2�; P (q)] if pw = 0 and � is not an equilibrium; (iii) �i(p)
is increasing for p 2 fpw; pw + �; :::; p�g:
Proof. In the Appendix.
Now, p� is an obvious equilibrium candidate since at p� an �-price increase

is unworthy (by Lemma 3, ��ij�pi=�(p
�) < 0 because ��ij�pi=��(p

�+�) >
0). However, for p� to be an equilibrium it has to be ��ij�pi(p

�) � 0 for
any �pi > 0: We have this result.

Proposition 3 Let pw not be an equilibrium. Then: (i) p� is an equilibrium
i¤ �i(p�) � e�. Holding this, let p�� 2 fk�g\(pw; p�] be such that �i(p����) <e� � �i(p��). The set of symmetric PSEs is made up of any p : p 2 fk�g \
[p��; p�]. (ii) There are no (symmetric or asymmetric) PSEs i¤ e� > �i(p�).
Proof. In the Appendix.
Remark 2. (i) By concavity of pD(p) and since p[D(p)� (n�1)q] < �i(p)

for p > pw, a su¢ cient condition for p� to be an equilibrium is ep � p�. (ii) If
pw is not an equilibrium, there will normally be several (if any) symmetric
PSEs, p� being the only one i¤ �i(p���) < e� � �i(p�).
3 Comparative statics

We now see how the size of the market and of the minimum currency denom-
ination a¤ect the equilibrium. Let us begin with the former. Given � and
q, an industry is a "demand function-number of �rms" pair. Suppose there
is no PSE in industry (D(p); n): by Lemma 4 and Prop. 3, ep > p� > pw

and e� > �i(p�) > �i(pw). To generate industries of di¤erent size, we adopt
Dixon�s (1993) replication procedure: from (D(p); n) a family of industries
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is derived, (D(r)(p); n(r)) =(rD(p); rn), where r > 1 and rn 2 I+. Let-
ting x be the value of some variable in industry (D(p); n), x(r) denotes its
value in the "r-replica" industry. Note that pw(r) = pw, p�(r) = p�; and
�i(p(r)) = �i(p) while ep�(r) is decreasing in r and e��(r) is also decreasing
(so long as ep�(r) > pw): for D(0) 6= Q, ep�(r) = pw and e��(r) = �i(p

w) at
some r 2 R+. (With D(0) = Q, ep�(r) converges asymptotically to 0.) It
follows immediately that p� is an equilibrium in a su¢ ciently large r-replica
industry; also, the set of symmetric PSEs includes pw for r large enough.

Proposition 4 Let there be no PSE in industry (D(p); n). Then, in industry
(D(r)(p); n(r)): (i) p� is an equilibrium for any r � r0, r0 being the smallest r
such that rn 2 I+ and e�(r) � �i(p�); (ii) with r � r0, the set of symmetric
PSEs is made up of any p : p 2 fk�g \ [p��(r); p�]g where p��(r) is non-
increasing in r and p��(r) = pw for r � r00, r00 being the smallest r such
that rn 2 I+ and (pw + �)[rD(pw + �) � (rn � 1)q] � �i(pw) (i. e., r(pw +
�)
�
Q�D(pw + �)

�
� �q if pw > 0 and r[Q�D(�)] � q if pw = 0).4

Example. With � = :01 and q = 2, let (D(p) = 4:2 � p; n = 2). Then
pw = :2, �i(pw) = :4; p� = :32, and �i(p�) = :62. There is no PSE: ep = 1:1
and e� = 1:21 > �i(p

�) > �i(p
w). One can check that r0 = 3, hence p� is

an equilibrium in any r-replica industry with r � 3. In fact, ep(r0) = :43 ande�(r0) = :56 < :62. Further, p��(r0) = :29; so that there are four symmetric
PSEs in the r0-replica industry. As r increases the set of symmetric PSEs
increases: with r � r00 = 10 any p 2{pw; pw + �; :::; p�g is an equilibrium.
To see the relevance of the size of the minimum currency denomination,

we now allow for changes in � (adjusting notation accordingly) while taking
D(p); n; and q as given. By the way, with P (Q) > 0 only values of � such
that P (Q) 2 fk�g can be allowed for: thus P (Q) is the maximum feasible
value for �. In the real domain, bp�(�) is continuous and twice di¤erentiable
with dbp�(�)=d� > 0 and lim�!0 bp�(�) = pw. As to p�(�) and �i(p�(�)), we have
Lemma 5. (i) Let Q � 2D(0) if pw = 0 and �D0(pw)

Q
pw � 1 if pw > 0.

Then, for any � > 0, p�(�) = � if pw = 0 and p�(�) = pw if pw > 0. (ii)
Let Q < 2D(0) if pw = 0 and �D0(pw)

Q
pw < 1 if pw > 0. Then, for � small

enough: (ii.a) p�(�) � 2� if pw = 0 and p�(�) � pw+ � if pw > 0; (ii.b) p�(�)
is non-decreasing in �; lim�!0 p

�(�) = pw and lim�!0 �i(p
�(�)) = �i(p

w).

4For comparison, let us review the main point made by Dixon through his replication
procedure under strict cost convexity. As in our model, pw(r) = pw and p�(r) = p�. Now,
at p� let �rm i deviate to p� + �: then its residual demand is decreasing in r and falls to
zero when r increases above some critical level (call it br): r > br is the condition Dixon
draws attention to - clearly, a su¢ cient condition for p� to be an equilibrium.
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Proof. (i), (ii.a) These follow from Lemma 2, D0 < 0 (as far as case pw = 0
is concerned) and concavity of pD(p) (as far as case pw > 0 is concerned).
(ii.b) This follows from dbp�(�)=d� > 0 and lim�!0 bp�(�) = pw:
This is a crucial result since p � p� at any symmetric PSE. One conse-

quence is that, if pw is not an equilibrium with continuous prices, then no
PSE exists with discrete pricing provided � is small enough.

Proposition 5 Suppose pw is not an equilibrium in the continuous action
space case. Then, if � > 0 is su¢ ciently small, no PSE exists.

Proof. In the stated conditions, �i(pw) < e��. Note that lim�!0 ep(�) = ep�
and lim�!0 e�(�) = e��. Thus, for � su¢ ciently small, pw is not an equilibrium:
�i(p

w) < e�(�). Furthermore, by Lemma 5, for � su¢ ciently small �i(p�(�)) <e�(�) and no PSE exists.
The size of � also matters when pw is an equilibrium. Let h� 2 I+ :

p�(�) = pw + (h� � 1)�; so that h� = #ffk�g \ [pw; p�(�)]g. Note that h� is
the number of symmetric PSEs when pw is itself an equilibrium. We also
let bh� 2 R+ : bp�(�) = pw + (bh� � 1)�, hence bh� = [(bp�(�) � pw)=�] + 1 while
h� = [(p�(�)�pw)=�]+1. We can now address equilibrium multiplicity in the
event of pw being an equilibrium.

Proposition 6 Suppose pw is an equilibrium in the continuous action space
case. (i) Let Q � 2D(0) if pw = 0 and �D0(pw)

Q
pw � 1 if pw > 0. Then, for

any � > 0: 0 and � are the only symmetric PSEs (h� = 2) if pw = 0 and
pw is the unique symmetric PSE (h� = 1) if pw > 0. (ii) Let Q < 2D(0) if
pw = 0 and �D0(pw)

Q
pw < 1 if pw > 0. Then: (ii.a) with � > 0 small enough,

h� � 3 if pw = 0 and h� � 2 if pw > 0; (ii.b) dh�=d� < 0 at any � > 0 and
maxh� = lim�!0 h

� = I+ \ [ Q

Q�D(pw)�pwD0(pw)
; Q

Q�D(pw)�pwD0(pw)
+ 1).

Proof. In the Appendix.

Note that, when there are several symmetric PSEs including pw, any
equilibrium price converges to pw as � ! 0: this is because p � p� at any
symmetric PSE and lim�!0 p

�(�) = pw.

Examples. Here are two examples to illustrate statement (ii) of Prop. 6.
1: D(p) = 50:4 � 12p; n = 24, q = 2. Then pw = :2 and pw is an

equilibrium for any �. For � = :2, p�(�) = 1 and h� = 5; for � = :01,
p�(�) = :32 and h� = 13; for � = :0001, p�(�) = 0:2019 and h� = 20. Note
that maxh� = I+ \ [20; 21) = 20.
2: D(p) = 52� p; n = 14, q = 2. Then pw = 24 and pw is an equilibrium

for any �. For � > 4, p�(�) = 24 and h� = 1: pw is the unique symmetric
PSE. For any � � 4, p�(�) = pw + � (h� = maxh� = I+ \ [28

24
; 52
24
) = 2).

7



4 Conclusion

We have studied discrete pricing when identical price-setting �rms produce
a homogeneous commodity at constant unit cost up to capacity. Necessary
and su¢ cient conditions have been found for the existence of a PSE and for
multiplicity of symmetric PSEs. We have seen that, with discrete pricing,
there may exist a PSE even when competitive pricing is not an equilibrium,
although such an event does not occur when the minimum fraction (�) of
the money unit is su¢ ciently small. Also, the existence of several symmetric
PSEs including competitive pricing is a concrete possibility and we have
computed the maximum number of such equilibria, obtaining for � small
enough.
Thus discrete pricing may lead to quite di¤erent results compared to the

continuous-action space model. On the other hand, one basic prediction of
that model - that the �rms earn the competitive pro�t at any PSE of the
price game - is not fundamentally misleading: if � is su¢ ciently small, then
either a PSE does not exist or the price must be equal to or cannot di¤er
signi�cantly from the competitive price at any symmetric PSE.
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Appendix
Proof of Lemma 3. Since��ij�pi=��(p+ �) � 0; then p+� > pw if pw > 0
and p+� � 2� if pw = 0. Let�qij�pi(p) be the change in i�s output when devi-
ating from p by �pi: then ��ij�pi=��(p+ �) = p�qij�pi=��(p+ �)� �

D(p+�)
n

and ��ij�pi=�(p) = p�qij�pi=�(p)+ �maxf0; D(p+ �)� (n� 1)qg. Our point
is obvious if p � P ((n�1)q)� �, hence we focus on p 2 (pw; P ((n�1)q)� �).
Here, ��qij�pi=�(p) = [D(p)=n]�[D(p+�)�(n�1)q] and�qij�pi=��(p+ �) =
q � [D(p + �)=n]: Letting ��qij�pi=�(p) = �qij�pi=��(p+ �) + � (where
� > 0),5 it is found that ���ij�pi=�(p) = p[�qij�pi=��(p+ �) + �]� �[D(p+
�) � (n � 1)q]: The right-hand side is larger than ��ij�pi=��(p+ �) since
D(p+ �)� (n� 1)q < D(p+�)

n
. Thus ��ij�pi=�(p) < 0.

Proof of Lemma 4. (i) Since ��ij�pi=�
(pw) > 0, then by Lemma 3,

��ij�pi=��
(pw+�) < 0: at pw+� it does not pay to undercut. Further,

p� � P (q) since pro�t is certainly raised by undercutting at p > P (q) and
such that D(p) > 0.
(ii) The argument runs as above.
(iii) The statement follows from concavity of �i(p) and �i(p�) � (p� �

�)q � �i(p
���); where at least one inequality is strict. This last fact is

obvious when p� > pw+� since then (p���)q > �i(p���) =(p���)D(p���)=n.
It is also obvious when p� = pw + � = �: then �i(p�) > �i(p���) = 0. When
p� = pw + � > �, we distinguish among two cases. If p� is an equilibrium,
then �i(p�) � e� while e� > �i(p

���) since pw = p� � � and pw is not an
equilibrium: If p� is not an equilibrium, then e� > �i(p

�) and ep > p�. If it

were �i(p�) = �i(p
���) it would be

h
d�i(p)
dp

i
p=p�

< 0 and hence a fortiorih
d
dp
(pD(p)� (n� 1)q)

i
p=p�

< 0; contrary to the fact that e� > �i(p�).
Proof of Proposition 3. (i) If �i(p�) � e�, a unilateral price increase is
unworthy at p�. It is also unworthy at p�� and, by statement (iii) of Lemma
4, at any p in between. Undercutting is also unworthy, by de�nition of p�:
(ii) Given statement (iii) of Lemma 4, it follows from e� > �i(p

�) thate� > �i(p) at p < p�: at any p < p�, i�s pro�t is raised by deviating to

5Note that ��qij�pi=�(p) > �qij�pi=��(p+ �) since (n�1)[Q�D(p+�)] > [Q�D(p)].

9



ep. Next, we dispose of asymmetric strategy pro�les with D(p) < Q (those
with D(p) � Q are immediately ruled out.) Let �i(pi; p�i) > 0 for i 2 H
(otherwise our case is obvious), so that D(p)�(n�n)q > 0 and �j(pj; p�j) =
pjq for j =2 H. If pj < p� � for some j, then any such j has not made a best
reply because �j(p0j; p�j) = p

0
jq for p

0
j 2 (pj; p).

We are left with strategy pro�les such that D(p) < Q and pj = p� � for
all j =2 H. Suppose �rst D(p� �)� (n� n)q � q. If i�s pro�t (for i 2 H) is
not raised by deviating to p� �, i. e., (p� �)q � pD(p)�(n�n)q

n
, then it pays for

j =2 H to deviate to p: it is (p� �)q < pD(p)�(n�1�n)q
1+n

because D(p)�(n�1�n)q
1+n

>
D(p)�(n�n)q

n
. Note that it is necessarily D(p� �)� (n� n)q > q when n > 1

and p � ep, the last inequality implying D(p)� (n � 1)q > 0. Next consider
strategy pro�les such that p > ep; n > 1; and D(p� �)� (n�n)q < q. Then it
pays for i 2 H to deviate to p�2�, i. e., (p�2�)q > pD(p)�(n�n)q

n
: In fact, this

condition amounts to 2�
p

nq

Q�D(p) < 1; which certainly holds: nq

Q�D(p) 2 (1; 2)
since D(p) < (n � n)q + q and n > 1, and 2�=p � 1=2 since p � 4� (due
to p > ep > p� > �). Finally, consider strategy pro�les such that n = 1.
These are easily dismissed if p 6= ep.6 If instead p = ep; then i 2 H would
be better o¤ by deviating to p � 2�. To see this, note that, since ep > p�,
at ep it pays to undercut, hence �nq < ep[Q � D(ep)]. Consequently, at the
asymmetric strategy pro�les under consideration it pays i 2 H to deviate toep � 2�: the resulting payo¤ of (ep � 2�)q can in fact be checked to be higher
than ep[D(ep)� (n� 1)q] so long as 2�q < ep[Q�D(ep)].
Proof of Proposition 6. (i) and (ii.a) follow from Lemma 2 and concavity
of pD(p). Incidentally, it is easily checked that if pD(p) is linear, then pw is
the unique symmetric PSE (�D0(pw)pw=Q � 1).
(ii.b) By the de�nition of bh� and using l�Hopital�s rule, lim�!0 bh� =

lim�!0(dbp�(�)=dp) + 1. Since (bp� � �)q � [bp�D(bp�)=n] = 0, it is dbp�=d� =
Q

Q�D(bp�)�bp�D0(bp�) and hence lim�!0 bh� = Q

Q�D(pw)�pwD0(pw)
+ 1, which equals

Q

Q�D(pw) + 1 if p
w = 0 and Q

�pwD0(pw) + 1 if p
w > 0.

Next we show that dbh�=d� < 0 at any � > 0 so that lim�!0 bh� = maxbh�.
By the de�nition of bp� and bh�;

bh� � 1� Q

Q�D(pw + (bh� � 1)�) + p
w

�
= 0: (4)

With pw = 0; it is immediately seen that dbh�=d� < 0. More generally, implicit
6In particular, with p > ep; deviating to p � � yields (p � �)D(p � �)=n, higher than

(p� �)[D(p� �)� (n� 1)q]; in its turn higher than i�s initial payo¤, p[D(p)� (n� 1)q].
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di¤erentiation of (4) yields

dbh�
d�

=
QD0(bh� � 1)�2 + (Q�D)2pw

�2[(Q�D)2 � �QD0]
; (5)

where D0 and D are evaluated at p = bp�. For further use below, note that
bh� = Q

Q�D(bp�)� bp�D0(bp�) + 1� �dbh�d� . (5�)

Making use of (4), from (5) it is easily seen that dbh�=d� < 0 if and only if

Q�(bp��pw)�D0 + Q�Dbp��pw
�
�(bp��pw)(Q�D)2 < 0. With pw > 0 and D00 � 0,

this inequality obviously holds for any �; since then Q�Dbp��pw � �D0.

With pw > 0, dbh�=d� < 0 even if D00 > 0, by concavity of pD(p). To
see this, we begin by showing that dbh�=d� < 0 for � close enough to 0.
Suppose contrarise that, in a right neighbourhood of 0, dbh�=d� � 0 so thatbh� � lim�!0 bh� in that neighbourhood. On the other hand, if dbh�=d� � 0,
then from (5�), strict concavity 7 of pD(p); and dbp�(�)=d� > 0 it follows thatbh� < lim�!0 bh�: a contradiction. Next we see that dbh�=d� < 0 throughout
(0; pw]. If not, then a local minimum occurs at some ��� 2 (0; pw), and there
exists �� > ��� such that dbh�=d� � 0 and bh�(��) � bh�(���). On the other
hand, bp�(���) < bp�(��); hence, by concavity of pD(p) and since dbh�=d� = 0

at ��� and dbh�=d� � 0 at ��, it follows from (5�) that bh�(���) > bh�(��): a
contradiction.
All the above has immediate implications for h�, with pw > 0 or pw = 0.

Since h� = I+ \ (bh� � 1;bh�], h� increases or stays constant as � decreases:
�nally, lim�!0 h

�(�) = I+ \ [ Q

Q�D(pw)�pwD0(pw)
; Q

Q�D(pw)�pwD0(pw)
+ 1) since, at

any � > 0, bh� < lim�!0 bh�.

7As already noted, with a linear pD(p) we are necessarily in the circumstances of
statement (i) (pw is the unique symmetric PSE).
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