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Abstract

This note examines firm locations in a delivered pricing model with positive production
externalities. We find that, quite counter intuitively, firms will disperse rather than move
closer, when production externalities are positive and reciprocal. Furthermore, we see a
divergence between the private and social optimal locations, which is in contrast to the
coincidence of these locations in the standard delivered pricing model.
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1 Introduction

A classic example of a positive production externality is in Cheung�s (1973) Fable of the
Bees, where an apple orchard and a bee keeper generate reciprocal positive externalities.
There are also reciprocal externalities between neighboring orchards where one orchard may
rent more beehives than the other. While the focus of Cheung�s work is on the contractual
arrangements among �rms in the presence of reciprocal externalities, the results are argued
given the location agglomeration of the orchards. It is widely believed and supported by both
theoretical and empirical research, that positive externalities induce �rms to locate closer to
the source of the externality. Sharing a common resource pool, of labor or transportation, is
likely to generate relatively more agglomeration, rather than �rm dispersion. Examining the
location choice of 751 manufacturing plants built in the U.S. since 1980, �ndings by Head et
al (1995) for example, support the hypothesis that industry level agglomeration bene�ts play
an important role in location decisions. In a di¤erentiated products model, where consumers
search for optimal product characteristics and �rms can in�uence search costs through their
location choice, Stahl (1982) characterizes �rm agglomeration. He shows that despite being
competitors, �rms �nd it pro�table to locate close to each other.
In this paper we �nd that, quite contrary to the expected response, each �rm has an

incentive to move farther away from its rival in the presence of positive and reciprocal
production externalities1. This result is driven by the delivered pricing framework where a
�rm�s delivered price is in�uenced by the rival �rm�s market share. In Hotelling�s (1929)
linear city with delivered pricing, we show that each �rm locates closer to its respective
market endpoint when there is a positive externality. Furthermore, we see a divergence
between the private and social optimal locations, which is in contrast to the coincidence of
these locations in the standard delivered pricing framework.2 Section 2 presents the model
and the results are discussed in Section 3.

2 Model

We consider a two-stage location-price duopoly, producing a homogenous good. Denote �rm
i�s output by qi for i = 1 and 2: The linear market is the interval [0; 1]. Let Pi(x; a; b) denote
the delivered price schedule o¤ered by �rm i (i = 1; 2), located at a and b respectively, where
x and a are measured from the left endpoint and b is measured from the right endpoint, of
the market. The delivered price is each �rm�s o¤er to sell and deliver to each market point x.
Delivered pricing implies that �rms practice spatial price discrimination across consumers.
Firm i�s production cost function is Ci(q1 ; q2) = c(qj) qi; (i = 1; 2) and is symmetric and

twice continuously di¤erentiable. Further:

1If the externality is negative, the reduced form of the cost function is concave in own output and a price
equilibrium in pure strategies does not exist at any pair of locations.

2See Hamilton et al, (1989).
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i: Cii(q1 ; q2) > 0; (i = 1; 2):

ii: Ciii(q1 ; q2) = 0; (i = 1; 2):

iii: Ciij(q1 ; q2) < 0; (i 6= j = 1; 2):
iv: Cij(q1 ; q2) < 0; (i 6= j = 1; 2):
v: Cijj(q1 ; q2) � 0; (i 6= j = 1; 2)
vi: jCii(q1 ; q2)j > jCij(q1 ; q2)j; (i 6= j = 1; 2):

Note that (i) and (ii) imply that marginal cost of production for �rm i is strictly positive
and constant with respect to its own output3. Conditions (iii) and (iv) state that �rm
i0s marginal cost and total cost is decreasing in the other �rm�s output. Condition (v)
assumes that this decrease occurs at an increasing rate with respect to the rival �rm�s
output. Moreover, own marginal cost of production is greater than the (absolute value of
the) marginal external bene�t, so that total cost for �rm i does not fall if both �rms increase
production. (For example, the function Ci(qi; qj) = qi=qj will satisfy the above conditions
on cost speci�cations.)
The remaining elements of the model follow standard assumptions. Transport cost is

linear with t being the cost per unit distance. Consumers are uniformly distributed over
the market and each has a perfectly inelastic demand for one unit of the commodity with
reservation price r. We assume that r is su¢ ciently large, to ensure that all consumers are
served. If everyone buys, then q1 + q2 = 1. Furthermore, if there is some market boundary
x�, such that everyone located on the left of x� buys from �rm 1 and everyone on the right
buys from �rm 2, then q1 = x� and q2 = 1� x�. A consumer buys from the �rm that o¤ers
the lowest price. If facing the same price, typically the consumer will buy from the �rm with
the lower delivered marginal cost. If both �rms have the same delivered price and the same
delivered marginal cost to a consumer at x, that consumer chooses a �rm at random.
The �rms play a two stage game. In stage one, they simultaneously choose locations. In

stage two, each �rm observes the rival�s location, and simultaneously chooses delivered price
schedules. At the end of stage two, consumers observe �rm locations and delivered price
schedules and buy according to the rules speci�ed.

3 Results

Firm 1�s delivered marginal cost to consumers in [0; x�] is strictly less than �rm 2�s delivered
marginal cost over this range. Exactly the opposite is true for consumers in [x�; 1]. By
de�nition, a point x� is a market division if �rm 1�s delivered marginal cost equals �rm 2�s
delivered marginal cost at x�:

tjx� � aj+ C11(x�; 1� x�)� C12(x�; 1� x�) = tj1� b� x�j+ C22(x�; 1� x�)� C21(x�; 1� x�)
3The literature on delivered pricing typically assumes linear production cost. See Gupta (1994) for an

analysis with convex costs.
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Hence,

x� =
1 + a� b

2
+ C22(x

�; 1� x�)� C11(x�; 1� x�) + C12(x�; 1� x�)� C21(x�; 1� x�) (1)

To a consumer at location x, each �rm o¤ers a delivered price which is the maximum
of the two �rms�delivered marginal cost at x. Hence, consumers in [0; x�] are o¤ered a
delivered price equal to �rm 2�s delivered marginal cost at x, and consumers in [x�; 1] are
o¤ered a delivered price equal to �rm 1�s delivered marginal cost at x. Since �rm 1 has a
cost advantage in [0; x�] and �rm 2 in [x�; 1], �rm 1 serves consumers located in [0; x�] and
�rm 2 serves consumers located in [x�; 1]. Lemma 1 states the second stage SPNE delivered
price schedules.

Lemma 1 The SPNE price schedules are

P 1�(x; a; b) = P 2�(x; a; b)

= max[tjx� aj+ C11(x�; 1� x�)� C12(x�; 1� x�);
tj1� b� xj+ C22(x�; 1� x�)� C21(x�; 1� x�)]

Firm 1 will o¤er a consumer at x, a price schedule that is the maximum of its own
delivered marginal cost and its rival�s delivered marginal cost, undercut by some arbitrarily
small �: Hence, P 1�(x; a; b) = max[P 2(x; a; b)� �; tjx� aj+C11(x�; 1� x�)�C12(x�; 1� x�)],
where � is positive and arbitrarily small. Firm 2 likewise o¤ers a consumer at x, the following
price schedule: P 2�(x; a; b) = max[P 1(x; a; b)��0; tj1�b�xj+C22(x�; 1�x�)�C21(x�; 1�x�)],
where �0 is positive and arbitrarily small. In the limit, �; �0 ! 0 and both �rms o¤er each
consumer at x the same price schedule, which is the maximum of their respective delivered
marginal cost, as stated in the lemma above.

Lemma 2 There exists a symmetric location equilibrium.

Using the SPNE delivered price schedule from Lemma 1 in �rm 1�s pro�t function, we
have:

�1(a; b) =

Z x�

0

[t j1� b� xj+ C22(x�; 1� x�)� C21(x�; 1� x�)� t jx� aj]dx� C1(x�; 1� x�)

Taking the second derivative and simplyfying we get:

@2�1
@a2

=
2t2[�t+ (C221(x�; 1� x�) + C112(x�; 1� x�) + C121(x�; 1� x�) + C212(x�; 1� x�))]
2t� [C221(x�; 1� x�) + C112(x�; 1� x�) + C121(x�; 1� x�) + C212(x�; 1� x�)]

+[C221(x
�; 1� x�)� C222(x�; 1� x�)� C211(x�; 1� x�) + C212(x�; 1� x�)

�C111(x�; 1� x�) + C112(x�; 1� x�)� C121(x�; 1� x�)� C122(x�; 1� x�)](
@x�

@a
)2

Using conditions (iii); (iv); (v) as speci�ed for the cost function, it follows that

@2�1
@a2

< 0
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Strict concavity of �1 guarantees a unique value of a which maximizes �1 for each b. Hence
the reaction function a(b) is a continuous function from [0; 1] into [0; 1]. From Brouwer�s
�xed point theorem, there must exist a b� such that a� = a(b�) = b�. Since both �rms have
identical cost and demand functions, b� = b(a�) must also hold. Hence (a�; b�) de�nes a
symmetric location equilibrium.
Proposition 3 establishes the incentive for each �rm to disperse from its rival�s given

location.

Proposition 3 If �rms 1 and 2 are located at the �rst and third quartiles respectively and
generate positive reciprocal externalities, then each �rm has an incentive to unilaterally move
toward its closest market endpoint, given the rival�s location.

The �rst derivative of �rm 1�s pro�t function is:

@�1(a; b)

@a
= �2at+ tx� + [t(1 + a� b� 2x�)]@x

�

@a

+[C22(x
�; 1� x�)� C21(x�; 1� x�)]

@x�

@a

�[C11(x�; 1� x�)� C12(x�; 1� x�)]
@x�

@a

+[C221(x
�; 1� x�) + C212(x�; 1� x�)]x�

@x�

@a
(2)

From (1); x� = 1
2
at a = b = 1

4
. Moreover,

@x�

@a
=

t

2t� [C221(x�; 1� x�) + C112(x�; 1� x�) + C121(x�; 1� x�) + C212(x�; 1� x�)]
> 0

Hence
@�1(a; b)

@a
< 0 at a = 1=4:

Consider �rm 1�s incentive to move, holding �rm 2�s location �xed at the third quartile. By
moving toward the endpoint, �rm 1 e¤ectively increases �rm 2�s market share and hence
the positive external e¤ect generated by that �rm. In turn, this lowers �rm 1�s delivered
marginal cost to its retained customers. Moreover, �rm 1�s lower market share also reduces
the marginal external bene�t for �rm 2, which raises that �rm�s delivered marginal cost
to its customers. E¤ectively that translates into a higher price that �rm 1 can charge its
retained customers. Both e¤ects serve to increase �rm 1�s pro�t. The sum of these two
e¤ects dominates the negative e¤ect of a smaller market share for �rm 1. As a result, �rm
1 has an incentive to move outside the market quartile and toward the endpoint. The next
proposition establishes the �rst stage location equilibrium.

Proposition 4 There exists a symmetric equilibrium such that the �rms choose to locate
outside the quartiles and closer to the market endpoints.
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Recall (2):

@�1(a; b)

@a
= �2at+ tx� + [t(1 + a� b� 2x�)]@x

�

@a
+ [C22(x

�; 1� x�)� C21(x�; 1� x�)]
@x�

@a

�[C11(x�; 1� x�)� C12(x�; 1� x�)]
@x�

@a

+[C221(x
�; 1� x�) + C212(x�; 1� x�)]x�

@x�

@a

At a symmetric equilibrium:

�2at+ t

2
+
[C221(x

�; 1� x�) + C212(x�; 1� x�)]
2

@x�

@a
= 0

or,

a� =
1

4
+
[C221(x

�; 1� x�) + C212(x�; 1� x�)]
2

@x�

@a
(3)

Since C221(x
�; 1� x�); C212(x�; 1� x�) < 0 and @x�

@a
> 0, it follows that a� < 1=4:

From (3), note that if a �rm�s marginal cost of production is constant and independent
of the external marginal bene�t, C221(x

�; 1� x�) = 0; (i 6= j = 1; 2), then the quartiles would
constitute a symmetric equilibrium location pair, even with a positive reciprocal externality,
Cij < 0; (i 6= j = 1; 2) . That is so because given its rival�s location at the market quartile, the
�rm cannot a¤ect its rival�s marginal cost and hence its own delivered price, by relocating
away from the quartile. If it were to disperse outside the quartile, it would only lose market
share, without any o¤setting increase in delivered price. This is similar to the outcome with
the standard constant marginal cost assumption.The incentive to relocate is generated by a
�rm�s ability to in�uence its rival �rm�s delivered marginal cost and hence its own delivered
price, via C221(x

�; 1�x�); C212(x�; 1�x�) < 0, manifested in the positive reciprocal externality.
In this case, we see from (3), that the �rms locate outside their respective quartiles, so that
they are farther away from each other.
It should be noted that the social cost minimizing locations with the positive externality,

are at the market quartiles, since the entire market is served and therefore total output
does not change as the �rms relocate. Hence the social cost minimizing locations coincide
with the locations that minimize transport cost. Therefore, contrary to the usual result
with delivered pricing, the pro�t maximizing locations do not coincide with the social cost
minimizing locations.
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