
Mechanism design with collusive supervision: a three-tier
agency model with a continuum of types 

Yutaka Suzuki
Faculty of Economics, Hosei University

Abstract

We apply the "Monotone Comparative Statics" method ala Topkis (1978), Edlin and
Shannon (1998), and Milgrom and Segal (2002)'s generalized envelope theorem to the
three-tier agency model with hidden information and collusion ala Tirole (1986, 1992),
thereby provide a framework that can address the issues treated in the existing literature, e.g.,
Kofman and Lawarree (1993)'s auditing application, in a much simpler fashion. In addition to
such a technical contribution, the paper derives some clear and robust implication applicable
to corporate governance reform (Propositions 1 (2) and 3).
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1 Introduction

Literature exists that deals with the issues associated with corporate governance and auditing
in a three-tier agency model with collusion, developed by Tirole (1986, 1992) and Laffont and
Tirole (1991), Laffont and Martimort (1997) etc. In particular, Kofman and Lawarree (1993)
applied a three-tier agency model–consisting of the two-type (productivity) agent, the internal
and external auditors (supervisors), and the principal–to the issue of auditing and collusion.1

However, this is a rather complicated model whose structure involves a Kuhn- Tucker problem
with many IC (Incentive Compatibility) and IR (Individual Rationality) constraints, and is not a
simple mathematical model. This mathematical complexity of this model is a disadvantage.

We introduce here the outcomes of “Monotone Comparative Statics” à la Topkis (1978), Mil-
grom and Roberts (1990), Edlin and Shannon (1998), and Milgrom and Segal (2002) into the
analysis of corporate governance in a three-tier agency model with a continuum of types. Our
paper provides a framework that can address the issues treated in the existing literature in a much
simpler fashion, and is indeed beneficial in that we can obtain some clear and robust implications
for corporate governance reform.

The basic tradeoff in our model is the benefit from the reduction in information rent by adding
the auditor (supervisor) versus the resource cost of adding him into the hierarchy, and this bottom
line is preserved through the extension and generalization of the model. The optimal collusion-
proof contract in the Principal-Supervisor-Agent three-tier regime has the property whereby (1)
Efficiency at the top (the highest type) and (2) Downward distortion for all other types, and the
downward distortion is mitigated at the optimum, in comparison with the Principal-Agent two-tier
regime. The optimal solution allows a simple comparative statics, which shows that downward
distortions from the first best output levels diminish when the accuracy of supervision increases
and the efficiency of collusion declines. This is a specific contribution to the literature. Whether the
principal indeed has an incentive to introduce a supervisor–that is, selects a three-tier hierarchy–
depends on the balance between the net benefits from both the improvement of marginal incentives
and the reduction in information rent and the resource cost of the auditor (supervisor). We obtain
these results by constructing a three-tier model with a mathematically more tractable structure,
which exploits the outcome of “Monotone Comparative Statics” à la Topkis (1978) and Edlin and
Shannon (1998), and Milgrom and Segal (2002)’s generalized envelope theorem.

2 Principal-Agent Hidden Information Model with a Continuum

of Types

2.1 Setting

We consider two players: a principal (P) and an agent (A). The principal owns the firm and hires
the manager (agent) to run it. θ is the manager’s ability to run the firm and C (X, θ) is the effort
cost for the manager of type θ to attain the output X. For each θ, C (X, θ) satisfies C (X, θ) > 0,
∂C (X, θ)/∂X > 0, ∂2C (X, θ)

±
∂X2 > 0, ∀X ∈ R+. W is the wage payment the agent receives, and

so his utility is W −C (X, θ). We normalize the agent’s reservation utility as 0. The timing of the
game is as follows. Prior to contracting, θ is determined randomly by nature and is known only
to the manager (agent). The principal proposes a take-it-or-leave-it contract offer to the manager.
The contract is written as W (X), where X is the output level by the manager and W is the wage
he receives if he generates X. If the manager accepts the offer, a contract is signed and the principal
is fully committed. If he rejects the offer, the game ends.

1Bolton and Dewatripont (2005)’s recent textbook presents a simple version of the collusion models (Tirole (1986),
Kofman and Lawarree (1993)).
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2.2 Preliminary: Single Crossing Property (SCP) and Monotonicity of Agent’s
Choice

Faced with a wage scheme W (X), the agent of type θ will choose

X ∈ argmax
X∈X

[W (X)− C (X, θ)]

Analysis is dramatically simplified when the Agent’s types can be ordered so that higher types
choose a higher output when faced with any wage. We identify when solutions to the parameterized
maximization program max

X∈X
U (X, θ) := W (X) − C (X, θ) are strictly increasing in the parameter

θ. A key property to ensure monotone comparative statics is the following:

Definition 1 A function U : X × θ → R where X, θ ⊂ R has the Single Crossing Property
(SCP) if UX (X, θ) exists and is strictly increasing in θ ∈ Θ.2

U (X, θ) =W (X)−C (X, θ) has SCP if UX (X, θ) =WX (X)−CX (X, θ) exists and is strictly
increasing in θ ∈ Θ for all X ∈ X. In this case, U (X, θ) satisfies SCP when the marginal cost of
output CX (X, θ) is decreasing in type θ, i.e., higher types always have gentler indifference curves.
SCP implies that large increases in X are less costly for higher parameters θ.

Theorem 1 (Edlin and Shannon 1998)
Let θ00 > θ0, X 0 ∈ argmax

X∈X
U (X, θ0), and X 00 ∈ argmax

X∈X
U (X, θ00). Then, if U has SCP, and either

X 0 or X 00 is in the interior of X, then X 00 > X 0.

We can apply Theorem 1 to the agent’s choice when facing a wage scheme W (·), assuming
that the agent’s cost C (X, θ) satisfies SCP. To ensure full separation of types, we need to assume
that the wage W (·) is differentiable. Then, U (X, θ) will satisfy SCP, and Theorem 1 implies that
interior output choices are strictly increasing in types, i.e., we have full separation.

2.3 The Full information Benchmark

As a benchmark, we consider the case in which the Principal observes the Agent’s type θ. Given
θ, she offers the bundle (X,W ) to solve:

max
(X,W )∈X×R

X −W (X) s.t. W (X)− C (X, θ) > 0 (IR)

(IR) is the Agent’s Individual Rationality constraint, and (IR) binds at a solution. Hence, the
Principal eventually solves: max

X∈X
X −C (X, θ) This is exactly the Total Surplus maximization. Let

XFB (θ) denote a solution, which we call the First Best (FB) solution. Using Theorem 1, we check
whether our assumptions ensure that XFB (θ) is strictly increasing in type θ. If C (X, θ) satisfies
SCP, which implies that Total Surplus X −C (X, θ) satisfies SCP, and if XFB (θ) is in the interior
for each θ, we can conclude that XFB (θ) is strictly increasing in θ.

Now we consider a different contract from the contractW : X → R which we have considered so
far, where the agent is asked to announce his type θ̂, and receives payment W

³
θ̂
´
in exchange for

an output X
³
θ̂
´
on the basis of his announcement θ̂. This is called a Direct Revelation Contract.

According to the Revelation Principle, any contract W : X → R can be replaced with a Direct
Revelation Contract that has an equilibrium in which all types receive the same bundles as in the
original contract W : X → R.

2Edlin and Shannon (1998) introduced this SCP under the name of “increasing marginal returns”.
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2.4 Solution with a Continuum of Types

Let the type space be continuous: Θ =
£
θ, θ
¤
, with the cumulative distribution function F (·), and

with a strictly positive density f (θ) = F 0 (θ). In addition to previous assumptions, we assume that
C (X, θ) is continuously differentiable in θ for all X, and Cθ (X, θ) is bounded uniformly across
(X, θ). The principal’s problem is:

max
hX(·),W (·)i

Z θ

θ
[X (θ)−W (θ)]f (θ) dθ

s.t. W (θ)− C (x (θ) , θ) >W (θ̂)− C
³
x
³
θ̂
´
, θ
´ ¡

ICθθ̂
¢
∀θ, θ̂ ∈ Θ

W (θ)− C (x (θ) , θ) > 0 (IRθ) ∀θ ∈ Θ
Just as in the two-type case, out of all the participation constraints, only the lowest type’s IR
binds.

Lemma 1 At a solution (X (·) ,W (·)), all IRθ with θ > θ are not binding, and only IRθ is
binding.

As for the analysis of ICs with a continuum of types, Mirrlees (1971) introduced a widely
used way to reduce the number of incentive constraints by replacing them with the corresponding
First-Order Conditions. The “trick” is as follows.

(IC) can be written as θ ∈ argmax
θ̂∈Θ

U
³
θ̂, θ
´
, where U

³
θ̂, θ
´
= W (θ̂) − C

³
X
³
θ̂
´
, θ
´
is the

utility that the agent of type θ receives by announcing that his type is θ̂. If θ ∈
¡
θ, θ
¢
and U

³
θ̂, θ
´

is differentiable in θ̂, then the first order condition ∂U
³
θ̂, θ
´.

∂θ̂
¯̄̄
θ̂=θ

= 0 is necessary for the above

optimality. We define the Agent’s equilibrium utility (the value):

U (θ) ≡ U (θ, θ) =W (θ)− C (X (θ) , θ)

Note that this utility depends on θ in two ways — through the agent’s true type and through his
announcement. Differentiating with respect to θ, we have U 0 (θ) = Uθ̂ (θ, θ) + Uθ (θ, θ), where the
first derivative of U is with respect to the agent’s announcement (the first argument) and the second
derivative is with respect to the agent’s true type (the second argument). Since the first derivative

equals zero by ∂U
³
θ̂, θ
´.

∂θ̂
¯̄̄
θ̂=θ

= 0, we have U 0 (θ) = Uθ (θ, θ). This condition is nothing but

the well known Envelope Theorem: the full derivative of the value of the agent’s maximization
problem with respect to the parameter — his type — equals to the partial derivative holding the
agent’s optimal announcement fixed. More concretely,

dU
³
θ̂, θ
´

dθ
=
∂
h
W (θ̂)− C

³
X
³
θ̂
´
, θ
´i

∂θ̂
× dθ̂
dθ
+
∂
h
−C

³
X
³
θ̂
´
, θ
´i

∂θ

Since ∂
h
W (θ̂)− C

³
X
³
θ̂
´
, θ
´i.

∂θ̂ = 0 at θ̂ = θ (the agent’s optimal announcement is Truth

Telling), we have the envelope condition:

U 0 (θ) =
dU (θ, θ)

dθ
= −∂C (X (θ) , θ)

∂θ
.

By integrating it, we have the important formula:

U (θ) = U (θ)−
Z θ

θ

∂C (X (τ) , τ )

∂τ
dτ (ICFOC)
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(ICFOC) demonstrates that with a continuum of types, incentive compatibility constraints pin
down up to a constant plus all types’ utilities for a given output rule X (·). This remarkable result
is derived from the generalized Envelope Theorem by Milgrom and Segal (2002).

Intuitively, (ICFOC) incorporates local incentive constraints, ensuring that the Agent does
not gain by slightly misrepresenting θ. By itself, it does not ensure that the Agent cannot gain
by misrepresenting θ by a large amount. For example, (ICFOC) is consistent with the truthful
announcement θ̂ = θ being a local maximum, but not a global one. It is even consistent with
truthful announcement being a local minimum.

Fortunately, these situations can be ruled out. For this purpose, recall that by SCP, Topkis
(1978) and Edlin and Shannon (1998) establish that the agent’s output choices from any tariff (and
therefore in any incentive compatible contract) are nondecreasing in type. Thus, any piecewise
differentiable IC contract must satisfy that X (·) is nondecreasing (M).

It turns out that under SCP, ICFOC in conjunction with (M) do ensure that truthtelling is a
global maximum, i.e., all ICs are satisfied:

Lemma 2 (X (·) ,W (·)) is Incentive Compatible if and only if both (ICFOC) and (M)
hold, where U (θ) = W (θ) − C (X (θ) , θ). In summary, “Incentive Constraints ⇔ First Order
Condition (ICFOC) + Monotonicity (M)”

Proof See, Appendix 1

Given (ICFOC), we can express transfers: W (θ)| {z }
Wage Payment

= C (X (θ) , θ)| {z }
Effort Cost

+ U (θ)| {z }
Information Rent
given for type θ

3 Collusion and Supervision

3.1 Introduction of a Supervisor and the Collusion-proof Problem

Now, we introduce a supervisor into the model. The principal can have access, at a cost z, to a
supervisor who can, for each θ, provide a proof of this fact with probability p, and with 1 − p, is
unable to obtain any information. We assume that proofs of θ cannot be falsified. In other words,
θ is hard information. On the other hand, the agent can potentially benefit from a failure by the
supervisor to truthfully report that his type is θ when the supervisor observed the signal θ. A self-
interested supervisor colludes with the agent only if he benefits from such behavior. We assume
the following collusion technology: if the agent offers the supervisor a transfer (side payment) t, he
benefits up to kt, where k ∈ [0, 1]. The idea is that transfers of this sort may be hard to organize
and subject to resource losses. We follow the literature in assuming that side-contracts of this sort
are enforceable (See, e.g., Tirole 1992).

To avoid collusion, the principal will have to offer the supervisor a reward Ws (θ) for providing
θ, such that the following coalition incentive compatibility constraint is satisfied.

Ws (θ) > kU (θ) = k
∙
U (θ)−

Z θ

θ

∂C (X (τ) , τ)

∂τ
dτ

¸
Indeed, once the information θ is obtained, the principal will reduce the Agent θ’s payment W (θ)
to effort cost C (X (θ) , θ), and not pay the information rent U (θ) to the agent θ. The agent is
thus ready to pay the supervisor an amount of U (θ), and the value of this side payment to the
supervisor is kU (θ), where k ∈ [0, 1]. Therefore, hiring a supervisor and eliciting his information
requires the principal to pay Ws (θ) = kU (θ) , ∀θ to the supervisor if the (hard) information of θ is
provided. Substituting Ws (θ) = kU (θ) into the Principal’s objective function, the virtual surplus
for type θ in the Principal-Supervisor-Agent regime is X (θ)− C (X (θ) , θ)− [(1− p) + pk]U (θ)
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Hence, the program of designing the optimal collusion-proof contract can be rewritten as

max
X(.),U(.)

Z θ

θ

⎡⎢⎢⎣X (θ)− C (X (θ) , θ)| {z }
Total Surplus

− [(1− p) + pk] U (θ)| {z }
Information

Rent

⎤⎥⎥⎦f (θ) dθ − z
s.t. dX (θ)/dθ > 0: X (θ) is nondecreasing (M)

U (θ) = U (θ)−
R θ
θ
∂C(X(τ),τ)

∂τ dτ (ICFOC)

U (θ) =W (θ)− C (X (θ) , θ) > u(Const.) (IRθ)

Note that the objective function takes the familiar form of the expected difference between total
surplus and the Agent’s information rent.

3.2 Solving the Relaxed Problem

Thus, the problem can be rewritten as

max
X(.)

Z θ

θ

∙
X(θ)− C(X(θ), θ)− [(1− p) + pk]

µ
U(θ)−

Z θ

θ

∂C(X(τ), τ)

∂τ
dτ

¶¸
f(θ)dθ − z

s.t. dX(θ)/dθ > 0 (M) ∀θ

where
R θ
θ

h
U (θ)−

R θ
θ
∂C(X(τ),τ)

∂τ dτ
i
f (θ) dθ can be called the expected information rents.

Lemma 3Z θ

θ

∙
U (θ)−

Z θ

θ

∂C (X (τ) , τ)

∂τ
dτ

¸
f (θ) dθ = U (θ)−

Z θ

θ

∂C (X (θ) , θ)

∂θ

1− F (θ)
f (θ)

f (θ) dθ

Proof See, Appendix 2

Substituting these expected information rents into the principal’s program, and ignoring the
constant U (θ), the program becomes

max
X(.)

Z θ

θ

∙
X(θ)− C(X(θ), θ) + [(1− p) + pk]∂C(X(θ), θ)

∂θ

1− F (θ)
f(θ)

¸
f(θ)dθ − z

s.t. dX(θ)/dθ > 0 (M) ∀θ
We ignore the Monotonicity Constraint (M) and solve the resulting relaxed program. Thus, the
principal maximize the expected value of the expression within the square brackets, which is called
the virtual surplus, and denoted by J (X, θ). This expected value is maximized by simultaneously
maximizing virtual surplus for (almost) every type θ, i.e.,

XS (θ) ∈ argmax
X(·)

X (θ)− C (X (θ) , θ) + [(1− p) + pk]
∙
1− F (θ)
f (θ)

¸
∂C (X (θ) , θ)

∂θ

This defines the optimal output rule XS (·) for the relaxed program. The principal’s choice of
XS (θ) can be understood as a trade-off between maximizing the total surplus for type θ and
reducing the information rents of all types above θ, just as in the two-type case. Indeed, (ICFOC)
says that output choice X for type θ results in additional information rent −∂C (X (θ) , θ)/∂θ for
all types above θ.
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In particular, for the highest type θ, there are no higher types, i.e., F (θ) = 1 and the principal
just maximizes total surplus, choosing XS(θ) = XFB(θ). In words, we have efficiency at the
top. For all other types, the principal will distort output to reduce information rents. To see the
direction of distortion, consider the parameterized maximization program

max
X∈X

Ψ (X, γ) = X (θ)− C (X (θ) , θ) + γ

∙
1− F (θ)
f (θ)

¸
∂C (X (θ) , θ)

∂θ

Here γ = 0 corresponds to surplus-maximization (first-best), and γ = 1 (p = 0, k ∈ [0, 1]) corre-
sponds to the principal’s (relaxed) second best program with only one agent.

Note that ∂Ψ(X,γ)
∂X∂γ =

h
1−F (θ)
f(θ)

i
∂2C(X(θ),θ)

∂X∂θ < 0 for θ < θ since the agent’s value U (X, θ) =

W (X)−C (X, θ) has the single crossing property (SCP), that is, ∂2U (X, θ) /∂X∂θ = −∂2C (X, θ)
/∂X∂θ > 0. Therefore, Ψ (X, γ) has SCP in (X,−γ), and by Theorem 1 (Edlin and Shannon), we
have X∗ (γ = 1)⇔ X (θ) < XFB (θ)⇔ X∗ (γ = 0) for all θ < θ. In words, the principal makes all
types other than the highest type underproduce in order to reduce the information rents of types
above them. Similarly, by introducing the supervisor, which basically corresponds to 0 < γ < 1,
we have

X∗ (γ = 1)⇔ X (θ) < X∗ (γ ∈ (0, 1))⇔ XS (θ) 6 X∗ (γ = 0)⇔ XFB (θ) .

Hence, in the Principal-Supervisor-Agent regime, the principal can induce more marginal incentives
than the second best regime with only one agent through the reduction in total and marginal infor-
mation rents paid to the supervisor and the agent θ, in other words, reducing the implementation
costs for any X < XS(θ) = XFB(θ). This result is a generalization of the two-type case. Thus, we
obtain the following proposition.

Proposition 1 In the Principal-Supervisor-Agent regime with a continuum of types, the optimal
collusion-proof contract has the property that
(1) Efficiency at the top (the highest type θ) X(θ) = XFB(θ)
(2) Downward distortion for all other types θ ∈

£
θ, θ
¢
is mitigated, that is,

X (θ) 6|{z}
Equality

holds at k=1

XS (θ) 6|{z}
Equality holds

either at p=1,k=0
or θ=θ

XFB (θ) .

Now, remember that we ignored the monotonicity constraint (M) and solved the relaxed program.
So, we need to check that the solution XS(θ) indeed satisfies the monotonicity constraint (M),
that is, the output rule XS(θ) is nondecreasing. We can check it using Theorem 1. To simplify
expressions, define h (θ) ≡ f (θ)/[1− F (θ)] > 0, which is called the hazard rate of type θ. Then,
the principal’s program can be rewritten as

max
X∈X

J (X, θ) = X − C (X, θ) + [(1− p) + pk]
h (θ)

∂C (X, θ)

∂θ

By Topkis (1978) and Theorem 1, assuming that C (X, θ) is sufficiently smooth, a sufficient condi-
tion for XS (θ) to be nondecreasing in θ is for the following derivative to be strictly increasing in
θ:

∂J (X, θ)

∂X
= 1− ∂C (X, θ)

∂X
+
[(1− p) + pk]

h (θ)

∂2C (X, θ)

∂X∂θ
(*)

Since −C (X, θ) satisfies SCP, the second term is strictly increasing in θ, and the first term does not
depend on θ. The only problematic term, therefore, is the third term. Our result is ensured when
the third term is nondecreasing in θ. Since 1/h (θ) is positive and ∂2C (X, θ)

±
∂X∂θ is negative,

this is ensured when ∂2C (X, θ)
±
∂X∂θ is nondecreasing. That is, we have
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Proposition 2 A sufficiency condition for the optimal collusion-proof solution XS (θ) to satisfy
the monotonicity constraint (M) is that the following conditions hold.
1. ∂2C (X, θ)

±
∂X∂θ is nondecreasing in θ.

2. The hazard rate h (θ) is nondecreasing.

Example: The first assumption is satisfied e.g., in the following cost function forms:

C (X, θ) = (X − θ)α and C (X, θ) = (X/θ)α ,α > 2

The second condition is called the “Monotone Hazard Rate Condition” and satisfied by many
familiar probability distributions. Now, we can present the following proposition on the comparative
statics.

Proposition 3 Suppose that the sufficiency condition in proposition 2 holds. Then, the opti-
mal collusion-proof solution XS (θ) is nondecreasing in the parameter p, and nonincreasing in the
parameter k.

Proof: From the equation (∗), the derivative JX (X, θ) is nondecreasing in the parameter p,
because the derivative of JX (X, θ) in the parameter p is −1+ k 6 0 for k ∈ [0, 1]. Hence, from the
Theorem 1, the optimal solution XS (θ) is nondecreasing in the parameter p. Particularly, XS (θ)
is strictly increasing in p for k ∈ [0, 1) from Theorem 1. The latter part can also be proved in the
same way: The derivative JX (X, θ) is nonincreasing in the parameter k for p ∈ [0, 1], and thus the
optimal solution XS (θ) is nonincreasing in the parameter k. ¥

This result could be said to demonstrate the advantage of our approach, because the exten-
sions of the Tirole (1986) model, such as Laffont and Tirole (1991), Kofman and Lawarree (1993),
Laffont and Martimort (1997), and Suzuki (1999), often have the complicated structure of a Kuhn-
Tucker problem with many IC and IR constraints, and so the global characterization of the optimal
solutions as well as the robust comparative statics are difficult to obtain, and only a local char-
acterization of the solution and comparative statics is possible in the above collusion literature,
while on the other hand, we can readily perform a robust (monotone) comparative statics, and the
rationale of the results is clear and intuitive.

We present economic insight on corporate governance. Under collusive supervision (auditing),
that is, p ↓ and k ↑, the optimal collusion-proof solution (output) XS (θ) by the agent (manager)
becomes lower , as does the principal’s (shareholder’s) payoff. Such lower performance firms should
move to some organizational form achieving p ↑ and k ↓ . Hence, a company with committees could
be said to be one of the desirable forms, in that it tightens the monitoring of the agent (manager)
p ↑ and ensures the independence of supervision k ↓ by employing outside directors as a majority
of committee members.

4 Conclusion

We introduced the outcomes of “Monotone Comparative Statics” à la Topkis (1978) and Edlin
and Shannon (1998), and Milgrom and Segal (2002)’s generalized envelope theorem into a familiar
screening (self selection) model with a continuum of types, and constructed a three-tier agency
model with a mathematically tractable structure. This should be an advantage in modeling in
comparison with the collusion literature e.g., Kofman and Lawarree (1993)’s auditing application
of the three-tier agency model à la Tirole (1986, 1992). The basic trade-off involved in adding
the auditor (supervisor) into the hierarchy is the benefit obtained by the discrete reduction in in-
formation rent and the improvement of marginal incentives (outputs) versus the resource cost of
the auditor (supervisor). This bottom line was consistently preserved through the model. Hence,

7



we can say that the overall contribution of our note is to apply the monotone comparative statics
method to the three-tier agency model with hidden information and collusion, to provide a frame-
work that can address the issues treated in the existing literature in a much simpler fashion, and
to derive some clear and robust implication applicable to corporate governance reform.
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APPENDICES
　

Appendix1 Proof of Lemma2

Proof: The “⇒” part was established above. It remains to show that local IC and monotonicity
imply that U

³
θ̂, θ
´
6 U (θ) for all θ̂, θ. For θ̂ > θ, we can write

U
³
θ̂, θ
´
− U (θ) =W (θ̂)− C

³
X
³
θ̂
´
, θ
´
− U (θ)

=U
³
θ̂
´
+ C

³
X
³
θ̂
´
, θ̂
´
− C

³
X
³
θ̂
´
, θ
´
− U (θ)

=
h
C
³
X
³
θ̂
´
, θ̂
´
− C

³
X
³
θ̂
´
, θ
´i
+
h
U
³
θ̂
´
− U (θ)

i
=

Z θ̂

θ

∂C
³
X
³
θ̂
´
, τ
´

∂τ
dτ +

Z θ̂

θ

∙
−∂C (X (τ) , τ)

∂τ

¸
dτ

=

Z θ̂

θ

⎡⎣∂C
³
X
³
θ̂
´
, τ
´

∂τ
− ∂C (X (τ ) , τ)

∂τ

⎤⎦ dτ 6 0
Here the last equality obtains by (ICFOC)3, and the inequality obtains by SCP and the fact that

X
³
θ̂
´
> X (τ) by (M). The proof for θ > θ̂ is similar. ¥

Appendix2 Proof of Lemma3

Proof: We transform the expected information rents by exploiting “Integration by Parts”.
Now, remember thatZ θ

θ

∙
U (θ)−

Z θ

θ

∂C (X (τ) , τ)

∂τ
dτ

¸
f (θ) dθ =

Z θ

θ
U (θ)f (θ) dθ

Because [U (θ)F (θ)]0 = U (θ) f (θ) +
dU (θ)

dθ| {z }F (θ) = U (θ) f (θ) −∂C (X (θ) , θ)
∂θ| {z }

(Due toEnvelopeTheorem)

F (θ), and so

U (θ) f (θ) = [U (θ)F (θ)]0 + ∂C(X(θ),θ)
∂θ F (θ), we have

Z θ

θ
U (θ) f (θ) dθ = [U (θ)F (θ)]θθ +

Z θ

θ

∂C (X (θ) , θ)

∂θ
F (θ)dθ

=U
¡
θ̄
¢
+

Z θ

θ

∂C (X (θ) , θ)

∂θ
F (θ)dθ

=U (θ)−
Z θ

θ

∂C (X (θ) , θ)

∂θ
dθ +

Z θ

θ

∂C (X (θ) , θ)

∂θ
F (θ)dθÃ

∵ U
¡
θ
¢
= U (θ)−

Z θ

θ

∂C (X (θ) , θ)

∂θ
dθ

!

=U (θ)−
Z θ

θ

∂C (X (θ) , θ)

∂θ
(1− F (θ)) dθ

=U (θ)−
Z θ

θ

∂C (X (θ) , θ)

∂θ

1− F (θ)
f (θ)

f (θ) dθ ¥

3U
³
θ̂
´
− U (θ) =

R θ̂
θ
dU
dτ
(τ) dτ =|{z}

∵Envelope
Theorem

R θ̂
θ
− ∂C(X(τ),τ)

∂τ
dτ
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