
     

 

 

  

  

Volume 29, Issue 2 

  

Dividend approach and level consistency for the Derks and Peters value 

  

 
 

Yu-Hsien Liao  
Department of Mathematics, Chung Jen College of Nursing, Health Science and Management 

Abstract 

Different from the potential approach of Hart and Mas-Colell (1989), we provide the dividend approach to multi-
choice games. Also, we define the level-reduced game by reducing the number of the activity levels and define related 
consistency on multi-choice games.
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1 Introduction

The Shapley value (Shapley, 1953) is a well-known solution concept in
cooperative game theory. A multi-choice TU game, introduced by Hsiao
and Raghavan (1992), is a generalization of a TU game in which each
player has several activity levels. There are several extensions of the
Shapley value in the framework of multi-choice games. Here we focus
one of these extensions proposed by Derks and Peters (1993), which we
name the D&P Shapley value.

Hart and Mas-Colell (1989) were the first to introduce the potential
approach to TU games. In consequence, they proved that the Shapley
value can result as the vector of marginal contributions of a potential
function. The potential approach is also shown to yield a characterization
for the Shapley value, particularly in terms of an internal consistency
property. In Section 3, we introduce the dividend approach to multi-
choice games. The dividend approach is a dual view of the potential
approach. By the dividend approach, we show that the D&P Shapley
value can result as the vector of aggregate of a dividend.

There are two important factors, the players and their activity levels,
for multi-choice games. By reducing the number of the players, Hwang
and Liao (2008) proposed an extension of the reduced game due to Hart
and Mas-Colell (1989) on multi-choice games. By reducing the number of
the activity levels, we define the level-reduced game and the level consis-
tency in Section 4. Finally, we show that the D&P Shapley value satisfies
the level consistency based on the dividend approach.

2 Definitions and Notations

Let U be the universe of players. Let N = {1, · · · , n} ⊆ U be a set
of players. Suppose each player i has mi ∈ N levels at which he can
actively participate. Let m = (m1, · · · ,mn) be the vector that describes
the number of activity levels for each player, at which he can actively
participate. For i ∈ U , we set Mi = {0, 1, · · · ,mi} as the action space of
player i, where action 0 means not participating, and M+

i = Mi \ {0}.
For N ⊆ U , N 6= ∅, let MN =

∏
i∈N Mi be the product set of the action

spaces for players N . Denote the zero vector in RN by 0N .
A multi-choice TU game is a triple (N,m, v), where N is a non-

empty and finite set of players, m is the vector that describes the number
of activity levels for each player, and v : MN → R is a characteristic
function which assigns to each action vector x = (x1, · · · , xn) ∈MN the
worth that the players can obtain when each player i plays at activity

1



level xi ∈Mi with v(0N) = 0. If no confusion can arise a game (N,m, v)
will sometimes be denoted by its characteristic function v. Given a multi-
choice game (N,m, v) and x ∈ MN , we write (N, x, v) for the multi-
choice TU subgame obtained by restricting v to {y ∈ MN | yi ≤
xi ∀i ∈ N} only. Denote the class of all multi-choice TU games by MC.

Given (N,m, v) ∈ MC, let LN,m = {(i, j) | i ∈ N, j ∈ M+
i }. A

solution on MC is a map ψ assigning to each (N,m, v) ∈ MC an
element

ψ(N,m, v) =
(
ψi,j(N,m, v)

)
(i,j)∈LN,m ∈ RLN,m

.

Here ψi,j(N,m, v) is the power index or the value of the player i when he
takes action j to play game v. For convenience, given (N,m, v) ∈ MC
and a solution ψ on MC, we define ψi,0(N,m, v) = 0 for all i ∈ N .

To state the D&P Shapley value, some more notations will be needed.
Given S ⊆ N , let |S| be the number of elements in S and let eS(N) be
the binary vector in RN whose component eSi (N) satisfies

eSi (N) =

{
1 if i ∈ S ,
0 otherwise .

Note that if no confusion can arise eSi (N) will be denoted by eSi .
Given (N,m, v) ∈ MC and x ∈ MN , we define ‖x‖ =

∑
k∈N xk and

S(x) = {k ∈ N | xk 6= 0}.
Let x, y ∈ RN , we say y ≤ x if yi ≤ xi for all i ∈ N . The analogue

of unanimity games for multi-choice games are minimal effort games
(N,m, uxN), where x ∈MN , x 6= 0N , defined by for all y ∈MN ,

uxN(y) =

{
1 if y ≥ x ;
0 otherwise.

Hsiao and Raghavan (1992) showed that for (N,m, v) ∈ MC it holds
that v =

∑
x∈MN\{0N}

ax(v) uxN , where ax(v) =
∑

S⊆S(x)

(−1)|S| v(x− eS).

Definition 1 (Derks and Peters, 1993) The D&P Shapley value
Θ is the solution on MC which associates with each (N,m, v) ∈MC and
each player i ∈ N and each j ∈M+

i the value

Θi,j(N,m, v) =
∑

x∈MN ,xi≥j

ax(v)

‖x‖
.

Note that the so called dividend ax(v) is divided equally among the
necessary levels.
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3 Potential and Dividend

For x ∈ RN , we write xS to be the restriction of x at S for each S ⊆ N .
Let N ⊆ U , i ∈ N and x ∈ RN , for convenience we introduce the
substitution notation x−i to stand for xN\{i} and let y = (x−i, j) ∈ RN

be defined by y−i = x−i and yi = j.
Given a function P : MC −→ R which associates a real number

P (N,m, v) to each game (N,m, v). Then for each (i, j) ∈ LN,m we define

Di,jP (N,m, v) = P (N,m, v)− P
(
N, (m−i, j − 1), v

)
.

Definition 2 A solution ψ on MC admits a potential if there exists
a function P : MC → R satisfies for all (N,m, v) ∈ MC and for all
(i, j) ∈ LN,m,

ψi,j(N,m, v) = Di,jP (N,m, v).

Solutions that admit a potential assign a scalar evaluation to each
game in such a way that a player’s payoff is his marginal contribution
to this evaluation. Moreover, a function P : MC −→ R is said to be 0-
normalized if P (N, 0N , v) = 0 for each N ⊆ U . And we say it is efficient
if it satisfies the following condition: For all (N,m, v) ∈MC,

∑
i∈N

mi∑
j=1

Di,jP (N,m, v) = v(m).

Theorem 1 (Hwang and Liao, 2008) A solution ψ on MC admits
a uniquely 0-normalized and efficient potential P if and only if ψ is the
D&P Shapley value Θ on MC. For all (N,m, v) ∈MC and (i, j) ∈ LN,m,

Θi,j(N,m, v) = Di,jP (N,m, v).

Given a function d : MC −→ R which associates a real number
d(N,m, v) to each (N,m, v) ∈ MC. Then for each (i, j) ∈ LN,m we
define ∫

i,j

d(N,m, v) =
∑

x∈MN ,xi≥j

d(N, x, v).

Definition 3 A solution ψ on MC admits a dividend if there exists a
function d : MC → R satisfies for all (N,m, v) ∈ MC, N 6= ∅ and for
all (i, j) ∈ LN,m,

ψi,j(N,m, v) =

∫
i,j

d(N,m, v).

3



Solutions that admit a dividend assign a scalar evaluation to each
game in such a way that a player’s payoff is his marginal accumulation
to this evaluation. Moreover, a function d : MC −→ R is said to be 0-
normalized if d(N, 0N , v) = 0 for each N ⊆ U . And we say it is efficient
if it satisfies the following condition: For all (N,m, v) ∈MC,

∑
i∈N

mi∑
j=1

∫
i,j

d(N,m, v) = v(m).

Theorem 2 Let ψ be a solution on MC. ψ admits a potential if and only
if ψ admits a dividend.

Proof. Assume that ψ be a solution on MC and ψ admits a dividend d.
Define P : MC −→ R to be that P (N,m, v) =

∑
x∈MN d(N, x, v) for all

(N,m, v) ∈MC. Since ψ admits the dividend d, for all (N,m, v) ∈MC
and (i, j) ∈ LN,m,

ψi,j(N,m, v) =
∑

x∈MN ,xi≥j
d(N, x, v)

=
∑

x∈MN

d(N, x, v)−
∑

x∈MN ,xi≤j−1

d(N, x, v)

= P (N,m, v)− P
(
N, (m−i, j − 1)

)
.

Hence, ψ admits the potential P .
Assume that ψ be a solution on MC and ψ admits a potential P .

Define d : MC −→ R to be that for all (N,m, v) ∈ MC, d(N,m, v) =∑
T⊆S(m)(−1)|T |P (N,m − eT , v). It is easy to check that P (N,m, v) =∑
x∈MN d(N, x, v). Since ψ admits the potential P , for all (N,m, v) ∈

MC and (i, j) ∈ LN,m,

ψi,j(N,m, v) = P (N,m, v)− P
(
N, (m−i, j − 1)

)
=

∑
x∈MN

d(N, x, v)−
∑

x∈MN ,xi≤j−1

d(N, x, v)

=
∑

x∈MN ,xi≥j
d(N, x, v).

Hence, ψ admits the dividend d. The proof is completed.

Theorem 3 A solution ψ on MC admits a uniquely 0-normalized and
efficient dividend d if and only if ψ is the D&P Shapley value Θ on MC.
For each multi-choice game (N,m, v) ∈MC and (i, j) ∈ LN,m

Θi,j(N,m, v) =
∑

x∈MN ,xi≥j

d(N, x, v).
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Proof. It is easy to derive this result by Theorems 1 and 2.

Remark 1 Given (N,m, v) ∈MC, by Definition 1 and Theorem 3,

d(N, x, v) =
ax(v)

‖x‖
for all x ∈MN .

4 Level-reduced Game and Level Consis-

tency

In this section we define the level-reduced game and the level consis-
tency which are putting the accent on ” level ”. Based on the dividend
approach, we also show that the D&P value satisfies the level consistency.

By reducing the number of the players, Hwang and Liao (2008) pro-
posed an extension of the reduced game due to Hart and Mas-Colell
(1989) on multi-choice games as follows. For S ⊆ N , we denote Sc =
N \ S. Given a solution ψ, a game (N,m, v) ∈MC, and S ⊆ N , the re-
duced game

(
N, (mS, 0Sc), vψS,m

)
with respect to ψ, S and m is defined

by for all x ∈MS,

vψS,m(x, 0Sc) = v(x,mSc)−
∑
i∈Sc

mi∑
j=1

ψi,j
(
N, (x,mSc), v

)
.

Definition 4 (Hwang and Liao, 2008) A solution ψ on MC satisfies
consistency (CON) if for all (N,m, v) ∈ MC, for all S ⊆ N and for
all (i, j) ∈ LS,mS , ψi,j

(
N, (mS, 0Sc), vψS,m

)
= ψi,j(N,m, v).

Theorem 4 (Hwang and Liao, 2008) The solution Θ satisfies CON.

Inspired by Hsiao, Yeh and Mo (1994), we define an alternative level-
reduced game and related consistency as follows. Given (N,m, v) ∈MC
and a solution ψ. For each z ∈ MN \ {0N}, we define an action vector
z∗ = (z∗i )i∈N where {

z∗i = mi if zi < mi

z∗i = 0 if zi = mi.

Furthermore, we define a new game vψz with z ∈ MN \ {0N} such that
for all y ≤ z,

vψz (y) = v(y ∨ z∗)−
∑

k∈S(z∗)

mk∑
t=1

ψk,t(N, (y ∨ z∗), v).

where (y ∨ z∗)i = max{yi, z∗i } for all i ∈ N . We call (N, z, vψz ) a level-
reduced game of v with respect to z and the solution ψ.
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Definition 5 A solution ψ on MC satisfies level consistency (LCON)
if for all i ∈ N \ S(z∗) and for all j ≤ zi, ψi,j(N,m, v) = ψi,j(N, z, v

ψ
z ).

Remark 2 Given (N,m, v) ∈ MC, S ⊆ N and a solution ψ. Let z =
(mS, 0Sc), by definitions of vψz and vψS,m, vψz (y) = vψS,m(y) for all y ≤ z.
Hence, if a solution ψ satisfies LCON, then ψ satisfies CON.

It is known that each (N,m, v) ∈ MC can be expressed as a lin-
ear combination of minimal effort games and this decomposition ex-
ists uniquely. The following lemma relates the relation of coefficients
of expressions between a (N,m, v) ∈ MC and its level-reduced game
(N, z, vΘ

z ) with respect to Θ and z.

Lemma 1 Let (N,m, v) ∈MC and (N, z, vΘ
z ) be the level-reduced game

of (N,m, v) with respect to Θ and z ∈ MN \ {0N}. Obviously, z can be
written by z = (mS, zSc) for some S ⊆ N . If v =

∑
y∈MN\{0N}

ay(v) · uyN ,

then vΘ
z can be expressed to be vΘ

z =
∑

0N 6=y≤z
ay(vΘ

z ) · uyN , where for all

y ≤ z,

ay(vΘ
z ) =

{ ∑
t≤mSc

‖(yS ,0Sc )‖
‖(yS ,0Sc )‖+‖(t,0S)‖a

(yS ,t)(v) if y = (yS, 0Sc) ,

0 if y = (yS, ySc) with |S(ySc , 0S)| 6= 0.

Proof. Let (N,m, v) ∈ MC and z ∈ MN \ {0N}. Obviously, z =
(mS, zSc) for some S ⊆ N where zi 6= mi for all i ∈ Sc. For any y ≤ z,

vΘ
z (y) = v(y ∨ z∗)−

∑
k∈S(z∗)

mk∑
t=1

Θk,t

(
N, (y ∨ z∗), v

)
. (1)

Clearly, vΘ
z (y) = 0 if y = 0N . Since z∗ = (0S,mSc),

(1) = v(yS,mSc)−
∑

k∈Sc

mk∑
t=1

Θk,mk

(
N, (yS,mSc), v

)
=

∑
k∈S(yS ,0Sc )

yk∑
t=1

Θk,t(N, (y ∨ z∗), v)

=
∑

k∈S(yS ,0Sc )

yk∑
t=1

∑
x≤(y∨z∗)
xk≥t

ax(v)
‖x‖

=
∑

k∈S(yS ,0Sc )

[ ∑
x≤(y,mSc )

xk≥1

ax(v)
‖x‖ + · · ·+

∑
x≤(y,mSc )
xk=yk

ax(v)
‖x‖

]
=

∑
k∈S(yS ,0Sc )

[ ∑
p≤yS
pk≥1

∑
t≤mS

a(p,t)(v)
‖(p,0Sc )‖+‖(t,0S)‖ + · · ·+

∑
p≤yS
pk=yk

∑
t≤mS

a(p,t)(v)
‖(p,0Sc )‖+‖(t,0S)‖

]
=

∑
x≤y

∑
t≤mS

‖(xS ,0Sc )‖
‖(xS ,0Sc )‖+‖(t,0S)‖ · a

(xS ,t)(v).

(2)
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By definition of vΘ
z , for any y ≤ z,

vΘ
z (y) = vΘ

z (yS, 0Sc). (3)

Set

ay(vΘ
z ) =

{ ∑
t≤mSc

‖(yS ,0Sc )‖
‖(yS ,0Sc )‖+‖(t,0S)‖a

(yS ,t)(v) if y = (yS, 0Sc) ,

0 if y = (yS, ySc) with |S(ySc , 0S)| 6= 0.

By (2) and (3), for all y ≤ z,

vΘ
z (y) =

∑
x≤y

∑
t≤mS

‖(xS, 0Sc)‖
‖(xS, 0Sc)‖+ ‖(t, 0S)‖

· a(xS ,t)(v) =
∑
x≤y

ax(vΘ
z ).

Hence vΘ
z can be expressed to be vΘ

z =
∑

0N 6=y≤z
ay(vΘ

z ) · uyN .

Theorem 5 The solution Θ satisfies LCON.

Proof. Let (N,m, v) ∈ MC and z ∈ MN \ {0N}. Obviously, z =
(mS, zSc) for some S ⊆ N where zi 6= mi for all i ∈ Sc. For all i ∈
N \ S(z∗) and for all 0 < j ≤ zi,

Θi,j(N, z, v
Θ
z ) =

∑
y≤z,yi≥j

ay(vΘz )
‖y‖

=
∑

y≤z,yi≥j

|S(ySc ,0S)|=0

ay(vΘz )
‖y‖ (By definition of vΘ

z )

=
∑

y≤z,yi≥j

|S(ySc ,0S)|=0

1
‖(yS ,0Sc )‖ ·

∑
t≤mSc

‖(yS ,0Sc )‖
‖(yS ,0Sc )‖+‖(t,0S)‖a

(yS ,t)(v)

(By Lemma 1)

=
∑

x∈MN ,xi≥j

ax(v)
‖x‖

= Θi,j(N,m, v).

Hence the solution Θ satisfies LCON.

Remark 3 Hwang and Liao (2008) characterized the D&P value by
means of consistency. By Remark 2 and Theorem 5, it’s easy to check
that consistency could be replaced by level-consistency in those axiomati-
zations.

In fact, as some axioms are alterd to fit solutions form focusing
on ”dividend”, the executions for characterizations among solutions on
multi-choice games are similar. The dividend forms not only offer inter-
pretations for solutions but also provide motivations for axioms of solu-
tions.
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