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Abstract

In this note we link the solutions for multi-choice games proposed by Hsiao and Raghavan
(1992), Derks and Peters (1993), and Peters and Zank (2005) with the Shapley values of
some particular TU games.
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1 Introduction

There are four extensions of the Shapley value in the framework of multi-
choice games. The four extended solutions are proposed by Hsiao and
Raghavan (1992), Derks and Peters (1993), Nouweland et al. (1995) and
Peters and Zank (2005), respectively. Calvo and Santos (2000) showed
that the solution notion of Nouweland et al. (1995) corresponds to the
discrete Aumann-Shapley method proposed by Moulin (1995). Roughly
speaking, they introduced the notion of the “replica TU game” for a
multi-choice game and showed that the multichoice value, proposed by
Nouweland et al. (1995), coincides with the Shapley value of the corre-
sponding replica TU game. That is, the solution of a multi-choice game
can be formulated by the Shapley value of the corresponding TU game.
In this note, we introduce the notion of TU decomposition games for a
multi-choice game and use it to study the solutions for multi-choice games
proposed by Hsiao and Raghavan (1992), Derks and Peters (1993), and
Peters and Zank (2005), respectively. We show that each of the three
extended solutions consists of the Shapley values of the corresponding
TU decomposition games.

2 Preliminaries

Let U be the universe of players. Let N ⊆ U be a set of players. For m =
(mi)i∈N , where mi ∈ N∪{0} for all i ∈ N , we set Mi = {0, 1, · · · , mi} as
the action space of player i, where the action 0 means not participating,
and M+

i = Mi \ {0}. For N ⊆ U , N 6= ∅, let MN =
∏

i∈N Mi be the
product set of the action spaces for players in N . Denote the zero vector
in RN by 0N .

A multi-choice game is a triple (N, m, V ), where N is a non-empty
and finite set of players, m is a vector that describes the number of
activity levels for each player, and V : MN → R is a characteristic
function which assigns to each action vector x = (xi)i∈N ∈ MN the
worth that the players can obtain when each player i plays at activity
level xi ∈ Mi with V (0N) = 0. If no confusion can arise a game (N, m, V )
will sometimes be denoted by its characteristic function V . Denote the
class of all multi-choice games by MC.

To state the extended Shapley values, some more notation will be
needed. Given (N, m, V ) ∈ MC and x ∈ MN , we define ‖x‖ =

∑
k∈N

xk

and S(x) = {k ∈ N | xk 6= 0}.
The analogue of unanimity games for multi-choice games are the min-
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imal effort games (N, m, Ux), where x ∈ MN , x 6= 0N , defined as: for
all y ∈ MN ,1

Ux(y) =

{
1 if y ≥ x ;
0 otherwise.

(1)

Hsiao and Raghavan (1992) showed that for all (N, m, V ) ∈ MC,

V =
∑

x∈MN

x 6=0N

ax(V ) Ux, (2)

where 2

ax(V ) =
∑

S⊆S(x)

(−1)|S| V (x− eS). (3)

Note that, by Equations (1) and (2), for all y ∈ MN \ {0N}

V (y) =
∑

x∈MN\{0N}
x≤y

ax(V ). (4)

Definition 1 Derks and Peters (1993) proposed a multi-choice Shapley
value, the D&P Shapley value. We denote the D&P Shapley value by
Θ; Peters and Zank (2005) proposed a multi-choice Shapley value, the
P&Z Shapley value. We denote the P&Z Shapley value by Γ; Hsiao
and Raghavan (1992) proposed a multi-choice Shapley value, the H&R
Shapley value. We denote the symmetric form of the H&R Shapley value
by Λ. Formally, the D&P Shapley value Θ ( the P&Z Shapley value Γ;
H&R Shapley value Λ) is the function on MC which associates with each
game (N, m, V ) and each player i ∈ N and each j ∈ M+

i the value 3

•
Θi,j(N, m, V ) =

∑
x∈MN

xi≥j

ax(V )

‖x‖
.

1y ≤ x means that yi ≤ xi for all i ∈ N
2Given S ⊆ N , let |S| be the number of elements in S and let eS(N) be the binary

vector in RN whose component eS
i (N) satisfies

eS
i (N) =

{
1 if i ∈ S ,
0 otherwise .

Note that if no confusion can arise eS(N) will be denoted by eS .
3Peters and Zank (2005) defined the P&Z Shapley value by fixing its values on

minimal effort games and imposing Linearity. Also, they named it the egalitarian
solution. In this paper, we define the P&Z Shapley value based on the dividends. On
the other hand, we define the H&R Shapley value in terms of the dividends. Hsiao
and Raghavan (1992) provided an alternative formula of the H&R Shapley value.
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•
Γi,j(N, m, V ) =

∑
x∈MN

xi=j

ax(V )

|S(x)|
.

•
Λi,j(N, m, V ) =

∑
x∈MN

0<xi≤j

ax(V )

|S(x)|
.

Note that the P&Z Shapley value is a subdivision of the H&R Shapley
value. It is known that for each (N, m, V ) ∈ MC,

∑
i∈N Λi,mi

(N, m, V ) =
V (m),

∑
i∈N

∑mi

j=1 Γi,j(N, m, V ) = V (m), and
∑

i∈N

∑mi

j=1 Θi,j(N, m, V ) =
V (m).

3 Main Results

For x ∈ RN , we write xS to be the restriction of x at S for each S ⊆ N .
Let N ⊆ U , i ∈ N and x ∈ RN , for convenience we introduce the
substitution notation x−i to stand for xN\{i} and let y = (x−i, j) ∈ RN

be defined by y−i = x−i and yi = j.
A transferable utility game (TU game) 4 is a pair (N, v) where

N is a coalition and v is a mapping such that v : 2N −→ R and v(∅) = 0.
Denote the class of all TU games by G.

The unanimity games for TU games, (N, uS), where S ⊆ N, S 6= ∅,
are defined by for all T ⊆ N ,

uS(T ) =

{
1 if S ⊆ T ;
0 otherwise.

(5)

It is well-known that for all (N, v) ∈ G,

v =
∑
S⊆N

S 6=∅

aS(v) uS, (6)

where
aS(v) =

∑
T⊆S

(−1)|S|−|T | v(T ). (7)

4For convenience, we will use lower case letter v and capital letter V to denote the
characteristic functions of TU games and multi-choice games, respectively.
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Note that, by Equations (5) and (6), for all T ⊆ N, T 6= ∅,

v(T ) =
∑
S⊆T

S 6=∅

aS(v). (8)

Given (N, m, V ) ∈ MC. Without loss of generality, suppose that
mi > 0 for all i ∈ N . Let i ∈ N and j ∈ M+

i . We define the P&Z-TU
decomposition game (N, vi,j

PZ) with respect to (i, j) by for all S ⊆ N ,

vi,j
PZ(S) = V

(
(m−i, j)S, 0N\S

)
− V

(
(m−i, j − 1)S, 0N\S

)
. (9)

We are now ready for the main theorem.

Theorem 1 Let (N, m, V ) ∈ MC, i ∈ N , j ∈ M+
i and (N, vi,j

PZ) be the
P&Z-TU decomposition game with respect to (i, j). Then

Γi,j(N, m, V ) = φi(N, vi,j
PZ), (10)

where φ is the Shapley value on TU games.
In particular, for all S ⊆ N, S 6= ∅,

aS(vi,j
PZ) =

∑
x≤(m−i,j)

xi=j,S(x)=S

ax(V ). (11)

Proof. Let (N, m, V ) ∈ MC, i ∈ N , j ∈ M+
i and S ⊆ N, S 6= ∅. By

Equation (4),

V
(
(m−i, j)S, 0N\S

)
− V

(
(m−i, j − 1)S, 0N\S

)
=

∑
x∈MN\{0N}

x≤
(
(m−i,j)S ,0N\S

) ax(V )−
∑

x∈MN\{0N}

x≤
(
(m−i,j−1)S ,0N\S

) ax(V )

=
∑

x≤
(

(m−i,j)S,0N\S

)
xi=j

ax(V )

=
∑
T⊆S

T 6=∅

∑
x≤(m−i,j)

xi=j,S(x)=T

ax(V ).

(12)

Combining Equation (12) with Equations (8) and (9),∑
T⊆S

T 6=∅

aT (vi,j
PZ) = vi,j

PZ(S) (by Equation (8))

= V
(
(m−i, j)S, 0N\S

)
− V

(
(m−i, j − 1)S, 0N\S

)
(by Equation (9))

=
∑
T⊆S

T 6=∅

∑
x≤(m−i,j)

xi=j,S(x)=T

ax(V ). (by Equation (12))
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Hence, for all S ⊆ N, S 6= ∅, aS(vi,j
PZ) =

∑
x≤(m−i,j)

xi=j,S(x)=S

ax(V ).

Finally, using the fact that φi(N, vi,j
PZ) =

∑
S⊆N

i∈S

aS(vi,j
PZ)

|S| , we have that

Γi,j(N, m, V ) =
∑

x∈MN

xi=j

ax(V )
|S(x)|

=
∑

S⊆N

i∈S

∑
x∈MN

xi=j,S(x)=S

ax(V )
|S(x)|

=
∑

S⊆N

i∈S

∑
x≤(m−i,j)

xi=j,S(x)=S

ax(V )
|S(x)|

=
∑

S⊆N

i∈S

aS(vi,j
PZ)

|S| (by Equation (11) and S(x) = S)

= φi(N, vi,j
PZ).

Remark 1 In Theorem 4.1 of Peters and Zank (2005), they provided a
probabilistic interpretation of the P&Z Shapley value closely related to the
well-known interpretation of the Shapley value, with the understanding
that players (other than player i) inside the formed coalition are active
on their highest level. This representation implies that the P&Z Shapley
value only uses a restricted subset of the information present in the multi-
choice game v: we only need to know the worths of those coalitions where
at most one player is active on a level different from 0 and m. This result
coincides with our Theorem 1.

Remark 2 Let i ∈ N and j ∈ M+
i . We define the H&R-TU decom-

position game (N, vi,j
HR) with respect to (i, j) by for all S ⊆ N ,

vi,j
HR(S) = V

(
(m−i, j)S, 0N\S

)
. (13)

Then, each component of the H&R Shapley value of a multi-choice game
is the Shapley value of the corresponding H&R-TU decomposition game,
i.e.,

Λi,j(N, m, V ) = φi(N, vi,j
HR). (14)

In particular, for all S ⊆ N, S 6= ∅,

aS(vi,j
HR) =

∑
x≤(m−i,j)

S(x)=S

ax(V ). (15)
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Next, we offer an analogue of Theorem 1 wit respect to the D&P
Shapley value.

Similarly, let (N, m, V ) ∈ MC, i ∈ N and j ∈ M+
i . We define 5 the

D&P-TU decomposition game (N, vi,j
DP ) with respect to (i, j) by for

all S ⊆ N ,

vi,j
DP (S) =

∑
T⊆S

T 6=∅

|T |
∑

x∈MN

xi≥j,S(x)=T

∑
K⊆S(x)

(−1)|K|V (x− eK)

‖x‖
. (16)

Theorem 2 Let (N, m, V ) ∈ MC, i ∈ N , j ∈ M+
i and (N, vi,j

DP ) be the
D&P-TU decomposition game with respect to (i, j). Then

Θi,j(N, m, V ) = φi(N, vi,j
DP ), (17)

where φ is the Shapley value on TU games.
In particular, for all S ⊆ N, S 6= ∅,

aS(vi,j
DP )

|S|
=

∑
x≤m

xi≥j,S(x)=S

ax(V )

‖x‖
. (18)

Proof. By Equations (3), (8) and (16),∑
T⊆S

T 6=∅

aT (vi,j
DP ) = vi,j

DP (S) (by Equation (8))

=
∑
T⊆S

T 6=∅

|T |
∑

x∈MN

xi≥j,S(x)=T

P

K⊆S(x)

(−1)|K|V (x−eK)

‖x‖ (by Equation (16))

=
∑
T⊆S

T 6=∅

|T |
∑

x∈MN

xi≥j,S(x)=T

ax(V )
‖x‖ . (by Equation (3))

Hence, for all S ⊆ N, S 6= ∅, aS(vi,j
DP )

|S| =
∑
x≤m

xi≥j,S(x)=S

ax(V )
‖x‖ .

5By Equation (3), ax(V ) =
∑

K⊆S(x)

(−1)|K| V (x − eK). It is not difficult to derive

an alternative formula of the P&Z-TU decomposition game (N, vi,j
PZ) with respect to

(i, j) as follows: for all S ⊆ N ,

vi,j
PZ(S) =

∑
T⊆S

T 6=∅

|T |
∑

x∈MN

xi=j,S(x)=T

∑
K⊆S(x)

(−1)|K|V (x− eK)

|S(x)|
.
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Finally, using the fact that φi(N, vi,j
DP ) =

∑
S⊆N

i∈S

aS(vi,j
DP )

|S| , we have that

Θi,j(N, m, V ) =
∑

x∈MN

xi≥j

ax(V )
‖x‖

=
∑

S⊆N

i∈S

∑
x∈MN

xi≥j,S(x)=S

ax(V )
‖x‖

=
∑

S⊆N

i∈S

∑
x≤m

xi≥j,S(x)=S

ax(V )
‖x‖

=
∑

S⊆N

i∈S

aS(vi,j
DP )

|S| (by Equation (18) )

= φi(N, vi,j
DP ).
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