
Imprimitivity in Decomposable Economies 

Ennio Bilancini
University of Siena

Abstract

This note extends the analysis of imprimitive indecomosable economies (e.g.~Nikaido, 1968,
1970) to the case of economies represented by a decomposable matrix. Using graph theory
we show that imprimitivity leads to cyclical production lags also in decomposable
economies, although in such a case the property must not be referred to the matrix
representing the economy but to its indecomposable sub-matrices along the block-diagonal.
The structure of the overall flow of commodities depends on both the number of imprimitive
sub-matrices and their imprimitivity index.
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1 Introduction

Indecomposable matrices constitute a class of non-negative square matrices
which occupy a paramount position in the linear multi-sectoral approach to
the economic modeling of production (e.g. Leontiev, 1941; Von Neumann, 1945;
Sra�a, 1960). Indecomposable matrices may be either primitive or imprimitive.
Solow (1952) and Nikaido (1968, 1970) provided an economic interpretation of
matrix imprimitivity in terms of cyclical 
ows of commodities in an indecom-
posable economy. Such 
ows have been shown to actually take place in real
economies (e.g. Defourny and Thorbecke, 1984; Sonis et al., 1993; Sonis et al.,
1997).1

The contribution of this note is to provide an extension of these results to the
case where a decomposable matrix has a number of indecomposable imprimitive
sub-matrices along its block-diagonal. Graph theory is applied to facilitate
economic intuition. Although graph theory has long ago become a standard
tool to study the properties of linear multi-sectoral models (e.g. Rosenblatt,
1957; Weil, 1968), the speci�c case under consideration has not yet been given
a simple interpretation in terms of the 
ows of commodities among groups of
industries.

Intuitively, the imprimitivity of an indecomposable sub-matrix along the
block-diagonal means that there exists a cyclical structure of 
ows of commodi-
ties among the industries which are identi�ed by the sub-matrix. In particular,
the index of imprimitivity { i.e. the number of eigenvalues of maximum modulus
{ determines the number of industry sub-groups which compose the cycle and,
hence, the period of the cycle. Combining such cyclical 
ows of commodities
with the one-directional 
ow which goes from raw materials to consumer prod-
ucts we get a pattern of input and output 
ows which is composed by a series of
nested cycles whose number is equal to the number of imprimitive sub-matrices
and whose period is equal to the index of imprimitivity of each imprimitive
sub-matrix.

The note is organized as follows. Section 2 explores the case under con-
sideration providing both abstracts characterizations and easily understandable
examples. Section 3 discusses the proposed interpretation and adds some �nal
remarks. All mathematical preliminaries which are not strictly necessary are
given in the Appendix.

2 Cyclical Production Lags

Let A � faijg
n
i;j=1 be a square matrix of order n. Element aij represents the

amount of commodity i required to produce one unit of commodity j.2 Hence,
row indices may be interpreted as commodity indices and column indices as
industry indices. Joint production is not considered. Finally, we label a single

1See also Kurz and Salvadori (1995) for a brief introduction to these issues which is entirely
based on matrix theory and linear programming.

2This interpretation implicitly requires that i) returns to scale are constant and ii) wages
are already taken into account by matrix A. However, these requirements are not crucial
for the issues discussed. All characterizations easily extend to the case where we have given
quantity produced and explicit wages. The present formulation is applied because it highlights
the (logical) time dimension which is tied to the suggested interpretation of imprimitivity.
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round of production activity as production lag.3

Let g(N;E) be a directed graph, where N is the set of nodes and E the
set of directed edges. The shorthand ij indicates the directed edge going from
node i to node j. By a path of length m � 1 connecting i to j it is meant a
�nite sequence of m directed edges fegmh=1 � f(rhsh)g

m
h=1 where eh 2 E, and

rh 2 N and sh 2 N indicate, respectively, the root (or starting point) and the
sink (or ending point) of each directed edge.4 When there is no need to specify
the edges composing a path, a path of length m connecting node i to node j is
denoted by pm(i; j). Moreover, a graph is connected if and only if there exists
i 2 N such that, for every j 6= i there exists pm(i; j) for some m. Finally, a
graph is strongly connected if and only if for any pair i; j 2 N , i 6= j, there
exists pm(i; j) for some m.

Suppose matrix A represents an economy composed of n industries. We
de�ne the graph induced by A as gA(N;E) where N � f1; 2; :::; ng and ij 2 E
whenever aij > 0. Moreover, A is decomposable if and only if gA is not strongly
connected (see lemma 1 in the Appendix).

2.1 Imprimitive Economies

Primitive matrices are indecomposable matrices characterized by the spectrum
being strictly dominated by a single eigenvalue of multiplicity one (see de�nition
3 in the Appendix). Imprimitive matrices are indecomposable matrices which
are not primitive.

A useful interpretation of imprimitivity is easily obtained by considering
that A is primitive if and only if there exists a positive integer k such that
Ak > 0 (see proposition 1 in the Appendix). Recall that Ak represents the
quantities of inputs that are required to produce 1 unit of each commodity in
exactly k production lags { each column referring to the inputs required by
the corresponding industry. Hence, an economy is imprimitive whenever it is
impossible to �nd a number of production lags for which the output of each
industry shows up (indirectly) as input of any other industry.

In terms of graph representation, imprimitivity of A means that gA shows
a cyclical 
ow of commodities among industries whose period is the index of
imprimitivity (Nikaido, 1968).5 The following corollary makes this statement
rigorous6

Corollary 1 If A is an imprimitive indecomposable matrix of order n and index
of imprimitivity h > 1. Then, there exist a partition � � fN1; :::; Nhg of the set
N such that gA(N;E) satis�es

i) 8i; j 2 Nk, ij =2 E, k = 1; :::; h

3Production lags have been studied with standard linear programming techniques in Dorf-
man et al. (1958).

4A path can have edges repeated as long as it is consistent with the de�nition (for instance
fij; ji; ijg or fij; jj; jj; jkg).

5Note that A is primitive if and only if gA has n2 paths of length k, for some k, connecting
any two (not necessarily distinct) nodes (see corollary 3 in the Appendix). See for instance
Gale(1956) or Ando et al. (1963) on unweighted graphs. For an analysis which puts more
emphasis on weighted graphs see for instance Lantner (1974) and Gazon (1979).

6The corollary follows by checking the properties of gA where A is in the form of point ii)
of Proposition 2 (see the Appendix).
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ii) 8Nk 2 �, 9Nl 2 � :�
8i 2 Nk; 9j 2 Nl : ij 2 E

�
^
�
8i 2 Nk; j =2 Nl ) ij =2 E

�
A brief illustration of the corollary will later help to better understand the case
of decomposable economies. Consider an economy represented by an indecom-
posable matrix with index of imprimitivity h. Then, its industries can be sorted
in h groups of N1; :::; Nh such that the output of each group constitute all direct
inputs of industries belonging to one and only one other group. In particular,
there exists a cyclic linkage among the h groups of industries whose period is
h. Without loss of generality, suppose that Nk directly produces the inputs of
Nk+1 and h + 1 � 1. Hence, some output of the industries in the group Nk is
indirectly used as input by industries in the group Nk+r every r production lags,
with 1 < r � h. However, the output of a single industry i 2 Nk is indirectly
used as an input by j 2 Nk+r every r+ hz > 1 productions lags, where z � 1 is
an integer. Indeed, the shortest path between i 2 Nk and j 2 Nk+r may not be
r because, although i must be linked by a path of length h to some u 2 Nk+r,
the latter may di�er from j. So, it could take one or more additional full rounds
of length h to get to j.

2.2 Decomposable Economies

Decomposable matrices are neither primitive nor imprimitive. However, decom-
posable matrices contain indecomposable sub-matrices which may or may not
be primitive. By looking at the index of imprimitivity of a particular set of these
sub-matrices, we can gather information about inter-industry relationships.

For the sake of exposition the analysis is limited to the case where there
exists a group of industries whose outputs are used, either directly or indirectly,
as inputs in any other industry (e.g. Solow, 1952; Sra�a, 1960). Let A represent
such an economy. In terms of the graph gA, we have that there exists a set
B � N such that, for any i 2 B and j 2 N , there exists pk(i; j) for some
k > 0.7 Without loss of generality, we assume that A is a matrix already in
normal form (see de�nition 2 in the Appendix). Then, we have the following:

Corollary 2 Let A be a decomposable matrix of order n and h1; :::; hs be the
indices of imprimitivity of the indecomposable blocks along the block-diagonal of
A. Then, there exist a partition � � fN1;1; : : : ; N1;h1 ; : : : ; Ns;1; : : : ; N1;hsg of
the set N such that gA(N;E) satis�es

i) hs > 1 ) 8i; j 2 Ns;k, ij =2 E, k = 1; : : : ; hs

ii) 8Ns;k 2 �, 9Ns;l 2 � :
(8i 2 Ns;k; 9j 2 Ns;l : ij 2 E) ^ (8i 2 Ns;k; j 2 Ns;t; t 6= l) ij =2 E)

Proof. Each square matrix Ai along the block-diagonal identi�es a set Ni � N
of industries. For each Ni, consider the partition �i � fNi;1; :::; Ni;hig of the
type described in Corollary 1. Since [ni=1Ni = N , the partitions �1 :::;�s induce
the partition � � fN1;1; :::; N1;h1 ; :::; N1;1; :::; N1;hsg on N . Applying corollary
1 gives the result.�

7The extension to the case where there exist disjoint Bt � N , t = 1; : : : ; q, such that for
any i 2 Bt and j 2 N nBt, there exists pk(i; j) for some k > 0 is straightforward.
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||||||||||||||||||||||||||||||||||
Example 1. A decomposable economy without cyclical production lags

Matrix representation

A =

2
66664

A1;1 A1;2 0 0 A1;5

0 A2;2 A2;3 A2;4 0
0 0 A3;3 0 A3;5

0 0 0 A4;4 A4;5

0 0 0 0 A5;5

3
77775

Graph representation of the quotient set

GFED@ABCN1
// 33

((GFED@ABCN2
// ++GFED@ABCN3 33GFED@ABCN4

// GFED@ABCN5

The sets N1; : : : ; N5 identify a partition of N according to the indecompos-
able matrices A1;1; : : : ; A5;5 along the block-diagonal. The 
ows of commodities
among these sets of industries are given by the non-negative matrices A1;2, A1;3,
A1;5, A2;3, A2;4, A3;5 and A4;5. The absence of imprimitive matrices among
A1;1; : : : ; A5;5 guarantees the absence of cycles.
||||||||||||||||||||||||||||||||||
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In order to better focus on the 
ows of commodities occurring among groups
of industries, it is useful to de�ne the equivalence relation � such that, for any
i; j 2 N , i � j if and only if i; j 2 Nk;l. Then, we can apply the quotient graph
gAj� to study the qualitative structure of commodity 
ows. Since there are s
indecomposable sub-matrices we can have up to s cycles which may be connected
among themselves in various ways. For each set Nk, industries belonging to the
same Nk;l � Nk produce inputs for some industries in Nk;l+1 and use products
of some industries in Nk�1;l. Moreover, industries in Nk;l may directly use the
products of any industry belonging to Nq, q < k, or produce the direct inputs
for any industry in Nr, r > k.

Depending on both the number of imprimitive matrices along the block-
diagonal and their index of imprimitivity, gAj� can take quite di�erent shapes.
On one extreme, if h1 = ::: = hs = 1, then gAj� is composed by s nodes and one
or more paths of the type f(rj ; sj)g

m
j=1 where m � s and rj < sj . This is the

case of no cyclicity at all. Example 1 illustrates it for a decomposable economy
composed by �ve indecomposable sub-groups of industries.

On the other extreme, if hi > 1 for all i = 1; :::; s, then gAj� is composed by
s cycles which have, respectively, h1; :::; hs nodes. Such cycles are encompassed
by paths of the type f(rj ; sj)g

m
j=1 where rj � sj . This is the case of maximal

cyclicity as indirect inputs 
ow according to regular periods both within and
across the s blocks of industries. Example 2 illustrates it for a decomposable
economy composed by thirteen sub-groups of industries divided in four inde-
composable groups whose index of imprimitivity are, respectively, 3, 4, 2, and
4.

Any other case is just a combination of the two extremes described.

3 Comment

We have provided a straightforward economic interpretation of a previously
overlooked case: linear multi-sectoral economies represented by decomposable
matrices which have indecomposable imprimitive sub-matrices along their block-
diagonal. Imprimitivity of a block-diagonal sub-matrix means that there exists
a cyclical structure of 
ows of commodities among the industries which are
identi�ed by the sub-matrix. The index of imprimitivity gives the number of
industry sub-groups which compose the cycle and, hence, the period of the cycle.
When we consider such cyclical 
ows together with the usual one-directional

ow which goes from raw materials to consumer products we obtain a pattern
of input and output 
ows which is composed by a series of nested cycles. In
particular, the number of cycles is equal to the number of imprimitive sub-
matrices and the period of each cycle is equal to the index of imprimitivity of
the associated sub-matrix.

Incidentally, we have also established that matrix imprimitivity leads to
cyclical production lags also in decomposable economies, although in such a
case the property must not be referred to the matrix representing the economy
but to its indecomposable sub-matrices along the block-diagonal.

A �nal remark is worth doing. If a non-negative indecomposable matrix has
at least a non-null element along its diagonal, then it is primitive (e.g. Solow,
1952; Nikaido, 1968). Indeed, if a part of industry i's product at time t is used
as a direct input to produce i's output at time t+1 then, from a certain period
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||||||||||||||||||||||||||||||||||
Example 2. A decomposable economy with cyclical production lags

Matrix representation

A =

2
664

A1;1 A1;2 A1;3 0
0 A2;2 A2;3 0
0 0 A3;3 A3;4

0 0 0 A4;4

3
775

A1;1 =

"
0 B2;1 0
0 0 B2;3

B3;1 0 0

#
A2;2 =

2
4 0 B4;5 0 0

0 0 B5;6 0
0 0 0 B6;7

B7;4 0 0 0

3
5

A3;3 =
h

0 B8;9

B9;8 0

i
A2;2 =

2
4 0 B10;11 0 0

0 0 B11;12 0
0 0 0 B12;13

B13;10 0 0 0

3
5

A1;2 =

"
0 0 0 0
0 B2;5 0 0

B3;4 0 0 0

#
A1;3 =

"
0 B2;9

0 0
0 0

#
A2;3 =

2
4 0 0

0 B5;9

0 B6;9

B7;8 0

3
5

A3;4 =
h

B8;10 0 0 B8;13

0 0 B9;12 0

i

Graph representation of the quotient set

ONMLHIJKN1;1
//

))ONMLHIJKN1;2

����
��
��

// ONMLHIJKN2;1
// ONMLHIJKN2;2

��

// ONMLHIJKN3;1

��

##ONMLHIJKN4;1
// ONMLHIJKN4;2

��ONMLHIJKN1;3

__>>>>>>

55
ONMLHIJKN2;4

OO

;;
ONMLHIJKN2;3

oo

99tttttttt ONMLHIJKN3;2

FF

//
;;

ONMLHIJKN4;4

OO

ONMLHIJKN4;3
oo

There are 4 groups of industries encompassed by a cycle, one for each block along
the diagonal of the normal form: N1 = f1; 2; 3g, N2 = f4; 5; 6; 7g, N3 = f8; 9g,
N4 = f10; 11; 12; 13g. These are in turn constituted by the sub-groups N1;1,
N1;2, N1;3, N2;1, N2;2, N2;3, N2;4, N3;1, N3;2, N4;1, N4;2, N4;3, N4;4 which
identify a partition of N = f1; : : : ; 13g.
||||||||||||||||||||||||||||||||||
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t0 � t + 1 onwards, i's product at time t is used as an indirect input in the
production of all commodities. This suggests two things. First, there are good
reasons to expect that both the number of cycles and their periods increase
when we move from industries producing raw materials to those producing �nal
goods. In fact, output reuse seems particularly likely for the former and less
and less likely as we approach the latter along the chain of production. Second,
both the number of cycles and their periods are likely to increase in the level of
disaggregation of production. In other words, as we adopt a �ner de�nition of
industry it is more likely that we �nd cyclical production lags.
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Appendix: mathematical preliminaries

Where not stated di�erently, de�nitions and propositions are borrowed from
Gantmacher (1959).

De�nition 1 A non-negative square matrix A � faijg
n
i;j=1 is decomposable

if the indices 1; 2; :::; n can be divided into two disjoint non-empty sets I �
fi1; i2; :::; ilg and J � fj1; j2; :::; jmg with l + m = n, such that ai�j� = 0 for
any i� 2 I and j� 2 J . Otherwise the matrix A is indecomposable.

The following characterization of matrix indecomposability is based on graph
theory (e.g. Rosenblatt, 1957).

Lemma 1 Let A be a non-negative square matrix. Then, A is decomposable if
and only if gA is not strongly connected.

Proof. Suppose A is of order n. If A is decomposable then there exist two
disjoint sets of indices I � fi1; i2; :::; iug and J � fj1; j2; :::; jvg with u+ v = n,
such that ai�j� = 0 for any i� 2 I and j� 2 J . It is straightforward to see that
pm(i�; j�) does not exist for any i� 2 I and j� 2 J and m � 1.

Conversely, suppose that there are no paths of any length going from node
i to node j, i 6= j. De�ne I � fig [ fk 2 N : pm(i; k);m � 1g and J � N n I.
Notice that J contains at least j. By construction, if r 2 I then, for any m � 1
and s 2 J , pm(r; s) does not exists, otherwise there would exist pm+l(i; s) for
some l � 1 and s would belong to I; in particular, p1(r; s) does not exist.
Therefore, we have that ars = 0 whenever r 2 I and s 2 J .�

De�nition 2 Let A be a square matrix of order n. Its normal form is

Â =

2
6666664

A1;1 : : : 0 A1;g+1 : : : A1;s

: : : : : : : : : : : : : : : : : :
0 : : : Ag;g Ag;g+1 : : : Ag;s

0 : : : 0 Ag+1;g+1 : : : Ag+1;s

: : : : : : : : : : : : : : : : : :
0 : : : 0 0 : : : As;s

3
7777775

where sub-matrices A1;1; : : : ; As;s are indecomposable and in each row f = g +
1; :::; s at least one of the matrices Af;1; :::; Af;f�1 is di�erent from zero.

The normal form of a matrix is unique up to permutations of the blocks of
indices. More precisely, the blocks 1; :::; g can be always be permuted without
modifying the normal form while permutations of the blocks g + 1; :::; s are
allowed only in certain cases. See Gantmacher (1959) for a detailed proof.
Clearly, if A is indecomposable then s = 1 while if A is completely reducible
then g = s.

De�nition 3 Let A be an indecomposable matrix and S the set of its eigenval-
ues where each eigenvalue appears a number of times equal to its multiplicity
as a root of the characteristic polynomial of A. De�ne �� � max�2S j�j and
h � jjf� 2 S : j�j = ��gjj. If h = 1 then A is primitive; otherwise, A is
imprimitive and h is its index of imprimitivity.
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Proposition 1 An indecomposable matrix A is primitive if and only if there
exists a positive integer k such that Ak > 0.

Corollary 3 An indecomposable matrix A is primitive if and only if there exists
an integer k > 0 such that, in the graph gA, there exists pk(i; j) for every i 6= j.

Proof. Let ai and aj be, respectively, the i-th row and the j-th column of
matrix A. Let faijg

k denote the entry of matrix Ak belonging to the i-th row
and j-th column. Corollary follows from Proposition 1 once it is proved that
faijg

k > 0 if and only if there exists a path pk(i; j) in gA. I show this by
induction. The condition is trivially satis�ed for k = 1. Suppose it holds for
k > 1. Since faijg

k+1 = faig
kaj we have that faijg

k+1 > 0 if and only if there
exists some h 2 N such that faihg

kahj > 0. Then, by the inductive hypothesis,
faijg

k+1 > 0 if and only if there exists pk(i; h) and p1(h; j) in gA for some
h 2 N , which in turn implies the existence of pk+1(i; j) in gA.�

If A is an indecomposable matrix and S and �� are de�ned as in De�nition
3, we know that there exists a positive real eigenvalue ~� 2 S which is equal
to �� (Perron, (1907); Frobenius, 1912). However, A may have negative or
complex eigenvalues with a modulus equal to ��. The following proposition from
Frobenius (1912) proves that whenever an indecomposable matrix is imprimitive
it shows a cyclical structure whose period is equal to the index of imprimitivity.
A proof can be found in Gantmacher (1959).

Proposition 2 Let A be an indecomposable matrix and S the set of its eigen-
values where each eigenvalue appears a number of times equal to its multiplicity
as a root of the characteristic polynomial of A. De�ne �� � max�2S j�j and
h � jjf� 2 S : j�j = ��gjj. Then,

i) �1; :::; �h 2 S are distinct solutions of the equation �h � �� = 0,

ii) if h > 1 then A is imprimitive and there exists a permutation of both rows'
and columns' indices such that A is reduced to the following cyclic form
with zero square blocks along the diagonal

A =

2
664

0 A12 0 : : : 0
0 0 A23 : : : 0
0 0 0 : : : Ah�1;h

Ah;1 0 0 : : : 0

3
775
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