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Abstract

The literature concerning the impact of heavy-tailed innovations upon unit root tests is
extended via analysis of the finite-sample distribution and size of the non-linear unit of
Kapetanios et al. (2003) in the presence of alternative finite and infinite variance innovation
processes. Simulation results obtained show the test to exhibit a degree of oversizing far in
excess of that previously noted for the linear Dickey-Fuller (1979) test.
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1 Introduction

Typically, the finite-sample distributions and properties of unit root tests are derived using identi-

cally and independently distributed standard Normal, or Gaussian, innovation processes. However,

in recent research Patterson and Heravi (2003) have examined the impact of fat or heavy-tailed

distributions upon the behaviour of unit root tests. This research is to be welcomed as there a

large literature suggesting that many time series processes (particularly financial series time series)

are better characterised by non-normal, heavy-tailed distributions (see, inter alia, Granger and

Orr, 1972; Loretan and Phillips 1994; Deo 2000; Resnick 2006). In response to this, Patterson and

Heravi (2003) analysed the finite-sample properties of the Dickey-Fuller (1979) and weighted sym-

metric Dickey-Fuller test of Park and Fuller (1995) in the presence of innovation processes following

the t (v) distribution for v = {1, 2, 3, 4}. An attractive feature of the use of a range of degrees of
freedom varying from from 1 to 4 is that it allows consideration of innovation processes with both

infinite (v = 1, 2) and finite variances (v = 3, 4). The results of Monte Carlo analysis undertaken by

Patterson and Heravi (2003) showed that while the Dickey-Fuller test exhibited moderate or slight

oversizing for the alternative non-normal disturbances considered, the weighted symmetric Dickey-

Fuller test was found to suffer from more substantial size distortion in the form of undersizing. It

is therefore apparent that the impact of heavy-tailed distributions has differing effects upon these

linear unit root tests both in terms of the extent of any resulting size distortion and its form. In

the present paper this literature is extended to consider the impact of the heavy-tailed distributions

considered by Patterson and Heravi (2003) upon the non-linear unit root test of Kapetanios et al.

(KSS) (2003). The results obtained from the following Monte Carlo analysis show the non-linear

KSS test to suffer more severe size distortion than either of the linear tests considered by Patterson

and Heravi (2003), with substantial oversizing noted.

This paper proceeds as follows. In section [2], the non-linear KSS test is presented. Section

[3] provides finite-sample critical values for the KSS test in the presence of innovation processes

following the standard normal and alternative heavy-tailed distributions. In section [4] the further

simulation analysis is undertaken to examine the finite-sample size of the KSS test in the presence of
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heavy-tailed distributions when commonly employed critical values obtained from use of innovations

following the standard normal distribution are employed. Section [5] concludes.

2 Non-linear unit root testing

KSS recently extended the literature on unit root testing via the introduction of a exponential

smooth transition autoregressive (ESTAR) alternative. KSS consider the following ESTAR process,

noting the expected low power of the linear ADF test when applied to such a series:

∆yt = γyt−1
n
1− exp

³
−θy2t−1

´o
+ εt (1)

The analysis of KSS focusses upon the parameter θ, with the relevant null and alternative hypothe-

ses given as H0 : θ = 0 and H1 : θ > 0. As γ is unidentified under the null, θ = 0 cannot be tested

directly. Consequently, KSS draw upon the work of Luukkonen et al. (1988) with a first-order

Taylor series expansion employed to the ESTAR model under the null H0: θ = 0 to derive a t-type

test statistic. The relevant testing equation is then as below:

∆yt = ψy3t−1 +
pX
i=1

κi∆yt−i + νt (2)

with the unit root hypothesis tested via the statistic tNL given as the t-type test of ψ = 0. A

noticeable feature of (2) is the absence of any deterministic terms. To allow application of the

test with intercept or intercept and trend terms included, these deterministic terms are removed

via preliminary regression with the demeaned or detrended version of yt employed in (2). These

alternative specifications of the tNL test are referred to here as the intercept and trend specifications.
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3 Finite-sample distribution and heavy-tailed innovations

To examine the finite-sample critical values of the tNL test in the presence of heavy-tailed innovation

processes, the following data generation process (DGP) is considered:

yt = yt−1 + ηt t = 1, ..., T (3)

where the following alternative cases are considered for the innovation process ηt:

Case I: ηt ∼ t (1)
Case II: ηt ∼ t (2)
Case III: ηt ∼ t (3)
Case IV: ηt ∼ t (4)
Case V: ηt ∼ N (0, 1)

(4)

As noted previously, Cases I and II provide examples of innovations with infinite variances, while

Cases III and IV allow examination of the impact of heavy-tailed, but finite variance, innova-

tions. Case V, where the innovation process follows the standard normal distribution, repre-

sents the situation typically employed in practice to derive critical values for unit root tests.

All experiments are performed over 50,000 simulations using the EViews 6.0 programming fa-

cility. Three sample sizes are considered (T = 100, 250, 500) , with critical values for the tNL

test in both its intercept and trend specifications derived at the following levels of significance:

α = {0.01, 0.025, 0.05, 0.1, 0.5, 0.9, 0.95}. The results obtained from these experiments are pre-

sented in Tables One and Two. From inspection of the results it is apparent that heavy-tailed

distributions have a substantial impact on the finite-sample distribution of the tNL test in both its

intercept and trend specifications, with t (1) or Cauchy innovations having the greatest impact. As

the degrees of freedom of the t-distributed innovations increase, the observed leftward movement

of the distribution of the tNL statistic is reduced, with values similar to those from application of

standard normal innovations being observed.
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Table One: Critical values for the intercept model

Innovation distribution

α t (1) t (2) t (3) t (4) N (0, 1)

T = 100 0.950 0.058 0.044 −0.013 −0.036 −0.045
0.900 −0.075 −0.335 −0.462 −0.508 −0.588
0.500 −1.471 −1.627 −1.674 −1.690 −1.714
0.100 −3.202 −2.926 −2.778 −2.713 −2.622
0.050 −4.140 −3.508 −3.200 −3.070 −2.903
0.025 −5.459 −4.180 −3.649 −3.437 −3.154
0.010 −8.199 −5.216 −4.360 −3.980 −3.469

T = 250 0.950 0.071 0.039 −0.033 −0.056 −0.061
0.900 −0.067 −0.364 −0.516 −0.562 −0.565
0.500 −1.473 −1.650 −1.702 −1.719 −1.735
0.100 −3.221 −2.901 −2.750 −2.694 −2.640
0.050 −4.127 −3.415 −3.142 −3.023 −2.912
0.025 −5.411 −4.029 −3.507 −3.341 −3.160
0.010 −7.850 −5.061 −4.099 −3.758 −3.475

T = 500 0.950 0.066 0.021 −0.057 −0.069 −0.074
0.900 −0.069 −0.393 −0.545 −0.575 −0.589
0.500 −1.467 −1.660 −1.717 −1.737 −1.744
0.100 −3.192 −2.876 −2.730 −2.685 −2.653
0.050 −4.129 −3.367 −3.078 −2.998 −2.931
0.025 −5.343 −3.941 −3.426 −3.285 −3.186
0.010 −7.697 −4.197 −3.951 −3.691 −3.460
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Table Two: Critical values for the trend specification

Innovation distribution

α t (1) t (2) t (3) t (4) N (0, 1)

T = 100 0.950 −0.399 −0.677 −0.784 −0.832 −0.886
0.900 −0.934 −1.105 −1.188 −1.221 −1.268
0.500 −2.382 −2.194 −2.172 −2.172 −2.170
0.100 −4.099 −3.719 −3.404 −3.272 −3.086
0.050 −5.020 −4.361 −3.909 −3.686 −3.375
0.025 −6.390 −5.059 −4.449 −4.098 −3.624
0.010 −9.508 −6.308 −5.213 −4.717 −3.942

T = 250 0.950 −0.378 −0.680 −0.811 −0.853 −0.843
0.900 −0.912 −1.116 −1.212 −1.242 −1.272
0.500 −2.382 −2.205 −2.188 −2.191 −2.203
0.100 −4.072 −3.645 −3.339 −3.219 −3.126
0.050 −4.969 −4.271 −3.766 −3.568 −3.405
0.025 −6.253 −4.952 −4.208 −3.913 −3.650
0.010 −8.891 −6.077 −4.847 −4.352 −3.943

T = 500 0.950 −0.325 −0.668 −0.817 −0.845 −0.852
0.900 −0.883 −1.111 −1.221 −1.252 −1.267
0.500 −2.376 −2.199 −2.193 −2.195 −2.194
0.100 −4.045 −3.593 −3.270 −3.173 −3.114
0.050 −4.907 −4.173 −3.664 −3.505 −3.392
0.025 −6.172 −4.810 −4.056 −3.833 −3.638
0.010 −8.678 −5.882 −4.666 −4.237 −3.927
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4 Finite-sample size and heavy-tailed innovations

The results of the above analysis show heavy-tailed distributions to influence the finite-sample

critical values of the tNL test, with a leftward shift in the distribution of the statistic observed. It can

therefore be concluded that practitioners employing critical values obtained from experimentation

using normally distributed innovations may experience spurious rejection when examining heavy-

tailed data. To gauge the extent of the spurious rejection or oversizing that may occur in these

circumstances, Monte Carlo experimentation is undertaken. Using the above DGP of (1)-(2), the

tNL test is applied to data generated using standard normal and heavy-tailed innovations. The

empirical sizes of the test under the alternative DGPs are then noted at the 1%, 5% and 10%

levels of significance when the commonly employed critical values obtained from consideration of

normally distributed innovations are employed. As previously, all experiments are performed over

50,000 replications with three alternative sample sizes considered: T = {100, 250, 500}.
Considering the results for the intercept and trend specifications reported in Tables Three and

Four, it can be seen that the degree of oversizing of the tNL can be substantial if commonly employed

critical values are used when analysing heavy-tailed data. As expected, the degree of oversizing

is greater when the degrees of freedom of the t−distributed innovations are lower, with maximum
distortion noted for the innovations following the Cauchy distribution. Interestingly, substantial

oversizing persists ever for a relatively large sample size (T = 500). To illustrate these findings,

consider the empirical size of the trend specification at the 10% level of significance. When the

innovations follow the t (1) distribution an empirical size of 29% is noted for T = 100, while the

corresponding value for T = 500 is only slightly lower at 27.30%. However, the corresponding figures

for t (4) innovations are 13.66% and 11.03% respectively. Oversizing for the trend specification can

therefore be seen to vary from 10.3% to 190% depending upon the degrees of freedom of the t-

distributed errors and the sample size employed. Analogous results are observed for the intercept

model.
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Table Three: Empirical sizes for the intercept specification

Innovation distribution

Nominal size(%) t (1) t (2) t (3) t (4) N (0, 1)

T = 100 10 16.89 14.96 12.90 11.74 10.00

5 13.02 10.30 8.06 6.93 5.00

1 8.08 5.23 3.26 2.36 1.00

T = 250 10 16.60 14.10 12.01 11.12 10.00

5 12.99 9.86 7.44 6.30 5.00

1 8.01 4.62 2.64 1.86 1.00

T = 500 10 16.25 13.78 11.56 10.75 10.00

5 12.57 9.18 6.68 5.84 5.00

1 8.03 4.47 2.34 1.65 1.00

Table Four: Empirical sizes for the trend specification

Innovation distribution

Nominal size (%) t (1) t (2) t (3) t (4) N (0, 1)

T = 100 10 29.00 20.13 15.71 13.66 10.00

5 21.74 14.71 10.43 8.39 5.00

1 11.65 7.79 4.77 3.26 1.00

T = 250 10 28.37 18.81 14.19 12.18 10.00

5 21.16 13.42 9.20 7.16 5.00

1 11.42 7.38 3.90 2.42 1.00

T = 500 10 27.30 17.78 12.82 11.03 10.00

5 20.38 12.59 7.84 6.25 5.00

1 11.01 6.54 3.09 1.93 1.00
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5 Conclusion

In this paper a finite-sample analysis of the non-linear unit root test of KSS in the presence of heavy-

tailed innovations has been undertaken. Results presented previously by Patterson and Heravi

(2003) have shown the Dickey-Fuller (1979) test to exhibit moderate oversizing in the presence

of heavy-tailed innovations, while the weighted symmetric Dickey-Fuller test of Park and Fuller

(1995) found to be substantially undersized. The results obtained from the current analysis add

to the above results for linear unit root tests, showing the non-linear test of KSS to suffer far

greater oversizing than the Dickey-Fuller test in the presence of identical heavy-tailed innovations.

Given the prevalence of heavy-tailed data in economics and finance and the increasing popularity

of application of non-linear unit root testing to these data (see, inter alia, Liew et al., 2004), the

present results suggest practitioners should exercise care when presented with rejection of the unit

root hypothesis in these circumstances.
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