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Abstract

This note analyzes constrained Pareto efficient nonlinear income tax schedules that are
monotonic chains to the left. The main result demonstrates that if all individuals have a
positive consumption at the tax schedule that maximizes the utility of the worst-off
individual, then the constrained utility possibility set is convex. As a consequence, all
constrained Pareto efficient nonlinear income tax schedules that are monotonic chains to the
left can be identified by maximizing a weighted summation of net utilities.
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1. Introduction

A commonly used procedure to identify constrained Pareto efficient nonlinear income
tax schedules is to maximize a welfare function, by choosing a consumption-income
bundle for each individual, subject to a budget constraint and a set of self-selection
constraints, which guarantee that no individual prefers some other bundle to his/her
own bundle. In a model with a continuum of individuals, Lollivier and Rochet (1983)
demonstrated that if the utility functions are quasi-linear, then the solution to the
optimal income tax problem in Mirrlees (1971) can be determined by solving a reduced-
form problem.1 In this reduced-form problem a weighted summation of net utilities is
maximized, by choosing only a consumption level for each individual, subject to that
the consumption level is non-negative and non-decreasing in skill level. The weights
in the objective function reflect the redistributional objectives of the social welfare
maximizer and the constraint in the maximization problem is a necessary condition
for self-selection. The maximization problem identifies an optimal consumption vector
and the income for each individual is expressed as a function of this consumption
vector. Weymark (1986a) derived this reduced-form problem in a finite economy, and
investigated the set of nonlinear income tax schedules that are a monotonic chains to the
left, i.e., the set of tax schedules where each individual is indifferent between receiving
his/her own consumption and the consumption of the next-lowest skilled individual.
Bunching and comparative static properties are analyzed in Weymark (1986b,1987).

As described above, in the reduced-form problem, the income for each individual is
expressed as a function of the consumption vector. However, there is no guarantee that
the reduced-form individual utility functions (i.e. individual utility as a function of only
the consumption vector) are concave. If this is not the case, then we cannot be certain
that the constrained utility possibility set is convex, and, as a consequence, we cannot
be certain that all constrained Pareto efficient nonlinear income taxes can be identified
by solving the reduced-form problem, see, e.g., Mas-Colell et al. (1995,pp.560). This
is a problem since the weights in the objective function represent the redistributional
objectives of the social welfare maximizer, so if not all constrained Pareto efficient
tax schedules can be identified, then it is not possible to capture all redistributional
aspects of nonlinear income taxation, by solving the reduced-form nonlinear income tax
problem. In this paper, we explore this problem in an economy with a finite number
of individuals.

We consider the reduced-form nonlinear income tax problem from Weymark (1986a)
and investigate, as, e.g., Guesnerie and Seade (1982) and Weymark (1986a,1986b,1987),
the set of nonlinear income tax schedules that are a monotonic chains to the left. More
explicitly, we examine properties of the constrained utility possibility set, given the
above type of income tax schedules. As it turns out, the tax schedule that maximizes
the utility of the worst-off individual reveals important properties of the constrained
utility possibility set. Our main result demonstrates that if all consumers have a

1See also Boadway et al. (2000) and Ebert (1992).
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positive consumption level at this schedule, then the constrained utility possibility set
is convex, in the reduced-form problem, and, as a consequence, all constrained Pareto
efficient nonlinear income tax schedules that are monotonic chains to the left can be
identified by solving the reduced-form problem, for some selection of weights, by the
supporting hyperplane theorem.

2. The Model and Basic Definitions

We consider an economy consisting of n ≥ 2 individuals indexed by i = 1, ..., n. In-
dividuals have preferences over consumption and labor and we shall denote individ-
ual i’s consumption and labor supply by ci and li, respectively. Individuals differ in
ability but have the same quasi-linear utility function ũ : R

2 → R, represented by:
ũ(ci, li) = v(ci) − li, where v(ci) is a continuous function with: v(0) = 0, v′(ci) > 0,
v′′(ci) < 0, limz→0 v′(z) → ∞ and limz→∞ v′(z) → 0. The ability of individual i is nor-
malized to equal i’s fixed wage rate, wi, and we shall assume, without loss of generality,
that: 0 < w1 < ... < wn. Income is given by: yi = wili. In terms of consumption and
income, the utility function ui : R

2 → R is given by:

ui(ci, yi) = v(ci) −
yi

wi

. (1)

As observed by Weymark (1986a), the utility functions defined in equation (1) are the
appropriate cardinalizations for making interpersonal comparisons.

A bundle is a vector xi = (ci, yi) ∈ R
2 and an allocation or, equivalently, a nonlinear

income tax schedule x = (x1, ..., xn) ∈ R
2n is a vector of n bundles. The marginal rate

of substitution for individual i at bundle xi = (ci, yi) is given by:

MRSi(ci, yi) =
1

wiv
′(ci)

. (2)

The assumption of quasi-linearity implies that the slopes of the indifference curves are
independent of income. Moreover, individuals with higher ability have flatter indiffer-
ence curves and, as a consequence, the single-crossing property holds. We shall also,
without loss of generality, normalize the price of the consumption good to one. There
is a constant-returns-to-scale technology specifying feasible allocations:

n∑
i=1

(yi − ci) ≥ 0. (3)

As is standard in the literature, we shall suppose that the social planner knows the
distribution of wages and the functional form of the utility function. However, neither
wi nor li is separately observable but the (pretax) income yi is observable for each
individual. Consequently, to induce individuals to report their ability truthfully, the
social planner offers each individual a choice from the same set of bundles, where each
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bundle is intended for a particular individual and where the bundles must satisfy the
self-selection constraint: ui(xi) ≥ ui(xj) for all i, j. However, since the single-crossing
condition is satisfied, it is easy to demonstrate that self-selection is satisfied for each
individual i if (see, e.g., Cooper, 1984):

wiv(ci) − yi ≥ wiv(ci−1) − yi−1 for all i �= 1, (4)

wiv(ci) − yi ≥ wiv(ci+1) − yi+1 for all i �= n. (5)

Henceforth, we shall refer to constraints (4) and (5) as the downward SS constraint and
the upward SS constraint, respectively. A tax schedule that satisfies the feasibility and
the SS constraints is said to be a constrained tax schedule. A constrained tax schedule
x is said to be constrained Pareto efficient if there is no other constrained tax schedule
x′ where ui(x

′
i) ≥ ui(xi) for all i with ui(x

′
i) > ui(xi) for some i. The social welfare

function W : R
2n → R is given by:

W (x) =
n∑

i=1

αiui(xi). (6)

In the above specification, the vector α = (α1, ..., αn) ∈ R
n represents the welfare

weights and we shall suppose, without loss of generality, that:
∑n

i=1 αi = 1. It is
well-known that the problem for the social planner can be thought of as choosing the
allocation directly, rather than indirectly through the choice of a nonlinear income
tax schedule, see, e.g., Stiglitz (1982) or Weymark (1986a,1986b,1987). Hence, the
nonlinear taxation problem for the social planner is:

Problem 1 Choose an allocation x to maximize the social welfare function (6) subject
to the feasibility constraint (3) and the SS constraints (4) and (5).

3. The Reduced-form Problem

In this section, we derive a reduced-form nonlinear income tax problem, which involves
only the consumption vector.2 We first state a few well-known results that will be
useful for future reference.

Lemma 1 For any solution to Problem 1 and i �= n it is true that: (i) the feasibility
constraint is binding, (ii) (ci+1, yi+1) ≥ (ci, yi) and (iii) un(xn) > ... > u1(x1).

Since the above results are well-known, we shall omit their proofs. From Part (ii) of
Lemma 1, it is clear that the consumption vector must belong to:

C = {c ∈ R+ | 0 ≤ c1 ≤ ... ≤ cn}.
2The reduced-form income tax problem was first investigated by Lollivier and Rochet (1983) in an

economy with a continuum of individuals and by Weymark (1986a) in a finite economy.
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Lemma 2 C is a convex set.

Proof. Suppose that c ∈ C and c′ ∈ C, then C is a convex set if c′′ = (1−λ)c+λc′ ∈ C
for all λ ∈ [0, 1]. Since c ∈ C and c′ ∈ C, it must be true that ci−1 ≤ ci and c′i−1 ≤ c′i
for all i �= 1. But then (1−λ)ci−1 ≤ (1−λ)ci and λc′i−1 ≤ λc′i for all λ ∈ [0, 1]. Adding
these inequalities yields: c′′i−1 = (1 − λ)ci−1 + λc′i−1 ≤ (1 − λ)ci + λc′i = c′′i for all i �= 1
and all λ ∈ [0, 1]. Hence c′′ = (1 − λ)c + λc′ ∈ C for all λ ∈ [0, 1].

A tax schedule where all downward SS constraints are binding is refereed to by Gues-
nerie and Seade (1982) as a monotonic chain to the left. In the remaining part of the
paper, we limit our attention to allocations that are monotonic chains to the left, i.e.,
allocations where all n − 1 downward SS constraints are binding. Since the feasibil-
ity constraint also is binding, by Part (i) of Lemma 1, we can, as demonstrated by
Weymark (1986a), use these n binding constraints in order to solve for the n incomes,
which yields:

y1(c) =
1

n

(
n∑

j=1

cj −
n−1∑
j=1

(n − j)wj+1(v(cj+1) − v(cj))

)
, (7)

yi(c) = yi−1 + wi(v(ci) − v(ci−1)) for all i �= 1. (8)

From the above equations, it is clear that the incomes can be expressed as a function
of the consumption vector, c. But then we can also express the consumption bundles,
the tax schedule and the individual utilities as a function of the consumption vector,
i.e., xi(c) = (ci, yi(c)), x(c) = (c, y(c)) and ui(c) = ui(xi(c)) = ui(ci, yi(c)). Note also
that if the incomes are given by the above equations and c ∈ C, then tax schedule
x(c) satisfies the feasibility requirement and the SS constraints, so it is a constrained
tax schedule. By substituting equations (7) and (8) into the welfare function (6), we

obtain the reduced-form social welfare function W̃ : C → R, i.e.:

W̃ (c) =
1

n

n∑
i=1

(βiv(ci) − ρci), (9)

where:

βi = (wi − (n − i)(wi+1 − wi))
i∑

j=1

αj

wj

+ (iwi+1 − (i − 1)wi)
n∑

j=i+1

αj

wj

for all i, (10)

ρ =
n∑

j=1

αj

wj

, (11)

and wn+1 is an arbitrary real number.3 The constant βi is refereed to by Weymark
(1986a,p.209) as an adjusted wage rate. The reduced-form problem is the following:

3Note that βn = ρwn for all wn+1 ∈ R. Weymark (1986a) assumes that the welfare weights sum to
n and works with a monotone transformation of the utility functions, given by: û(ci, yi) = wiv(ci)−γyi

for all i. These observations account for the differences between conditions (9) and (10) in this paper
and conditions (23) and (24) in Weymark (1986a).
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Problem 2 Choose a consumption vector c to maximize the reduced-form social wel-
fare function (9), subject to c ∈ C.

Weymark (1986a) demonstrated that the solution to Problem 1 can be found by solving
for the optimal consumption vector in Problem 2 and substitute the optimal consump-
tion vector into equations (7) and (8) to find the optimal incomes. The following result
relates the adjusted wage rates to the optimal consumption vector.

Lemma 3 (Weymark, 1986b) Suppose that ĉ ∈ C is an optimal solution to Problem 2
and that βi > 0 for all i, then (i) ĉi > 0 for all i and (ii) ĉi = ĉi+1 > 0 if βi ≥ βi+1 for
some i �= n.

4. The Constrained Utility Possibility Set

We next investigate the constrained utility possibility set (U , henceforth). At the
constrained tax schedule x(c), the utility for individual i is given by ui = ui(c), and
the vector of utilities is given by u = (u1, ..., un) ∈ R

n. Formally, U is defined as:

U = {u ∈ R
n | ui ≤ ui(c

′) for all i and some constrained tax schedule x(c′)}.
By definition of constrained Pareto efficiency, the vector of utility values u of a con-
strained Pareto efficient allocation must belong to the boundary of the constrained
utility possibility set (U0, henceforth), i.e.:

U0 = {u ∈ R
n | there is no u′ ∈ U such that u′

i ≥ ui for all i with u′
i > ui for some i}.

It is well-known that if U is a convex set, then all constrained Pareto efficient allocations
can be identified by maximizing a weighted summation of net utilities for some selection
of welfare weights, by the supporting hyperplane theorem, see, e.g., Negishi (1960) or
Mas-Colell et al. (1995,pp.560). In the remaining part of this paper, we investigate
under which circumstances that U is a convex set.

Our first two results demonstrate that if the reduced-form utility function for in-
dividual 1 is concave, then the reduced form utility function for all individuals are
concave (Proposition 1), and, as a consequence, the constrained utility possibility set,
in the reduced-form problem, is convex (Proposition 2).

Proposition 1 Suppose that the incomes are given by equations (7) and (8) and that
u1(c) is concave in C, then ui(c) is concave in C for all i.

Proof. From the identity (1) and equations (7) and (8), it follows that:

u1(c) =
1

nw1

(
n∑

j=1

v(cj)(wj − (n − j)(wj+1 − wj)) − cj

)
, (12)

ui(c) =
1

wi

(wi−1ui−1(c) + v(ci−1) (wi − wi−1)) for all i �= 1. (13)
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Since C is a convex set, by Lemma 2, v(·) is concave and 0 < w1 < ... < wn, it is
immediate from condition (13) that ui(c) is concave in C for all i �= 1 when u1(c) is
concave in C.

Proposition 2 Suppose that the incomes are given by equations (7) and (8) and that
u1(c) is concave in C, then U is a convex set.

Proof. Suppose that the constrained tax schedules x(c) and x(c′) correspond to utility
vectors u ∈ U and u′ ∈ U , respectively. We need to demonstrate that (1− λ)u + λu′ ∈
U for all λ ∈ [0, 1], i.e., that there is another constrained tax schedule x(c′′) where
ui(c

′′) ≥ (1−λ)ui(c)+λui(c
′
i) for all i and all λ ∈ [0, 1]. Define now c′′ = (1−λ)c+λc′,

and note that c′′ ∈ C, by Lemma 2. But since u1(c) is concave in C, by assumption,
the utility functions are concave in C, by Proposition 1, and, therefore, ui(c

′′) ≥
(1 − λ)ui(c) + λui(c

′
i) for all i and all λ ∈ [0, 1].

From the above two propositions, we conclude that a sufficient condition for the con-
strained utility possibility set to be convex is that the reduced-form utility function for
individual 1 is concave. Let us now investigate this condition in more detail. Note first
that u1(c) is concave in C if:

u1((1 − λ)c + λc′) ≥ (1 − λ)u1(c) + λu1(c
′) for c, c′ ∈ C and all λ ∈ [0, 1].

Using equation (12), this condition reduces to:

1

nw1

n∑
j=1

[
wj − (n − j)(wj+1 − wj)

] (
v((1 + λ)cj + λc′j) − (1 − λ)v(cj) − λv(c′j)

) ≥ 0.

Since v(·) is a concave function, we see that this inequality is satisfied if:

wj − (n − j)(wj+1 − wj) > 0 for all j = 1, ..., n.

From the specification of the adjusted wage rates (10), this condition reduces to:

βj > 0 for all j = 1, ..., n when α1 = 1 and αi = 0 for all i �= 1. (14)

But this selection of welfare weights is the selection that maximizes the utility of the
worst-off individual, i.e., individual 1, by Part (iii) of Lemma 1. Moreover, if βj > 0 for
all j at the tax schedule that maximizes the utility of the worst-off individual, then the
consumption is positive for all individuals, by Lemma 3. We gather our observations
in the following theorem.

Theorem 1 If condition (14) holds or, equivalently, if the consumption vector that
maximizes the utility of the worst-off individual is positive, then every constrained
Pareto efficient nonlinear tax schedule that is a monotonic chain to the left can be
identified by solving Problem 2, for some selection of welfare weights.
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Proof. If condition (14) holds, then U is a convex set, by Proposition 2, and the
conclusion follows directly from the supporting hyperplane theorem.

Note, finally, that in the case when n ≥ 3, at least one welfare weight must be negative,
in order to identify some of the constrained Pareto efficient tax schedules. This result
is attributed to Andersson (2007).
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