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Abstract

Some recent contributions (Femminis, 2007; Nakamura, 2002) demonstrate the important
roles of capital depreciation in the investment-uncertainty relationship. This paper highlights
the role of symmetric adjustment costs in the case that capital depreciates completely after
finite periods. Various uncertainty-investment relationships emerge depending on the
curvature of convex adjustment cost function. While investment decreases with uncertainty if
the curvature is small, it increases with uncertainty if the curvature is large. If the curvature is
in between, the investment-uncertainty relationship shows an inverted U-shaped curve:
investment first increases and then decreases with uncertainty.
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1. Introduction 

Recent contributions by Femminis (2007) and Nakamura (2002) demonstrate that the 
assumptions on capital depreciation often play a key role in determining the investment-
uncertainty relationship. Saltari and Ticchi (2005) examine the investment decision of a risk-
averse firm to show that the relationship is negative only when the coefficient of relative risk-
aversion is lower than unity but larger than the labor share of income. As Femminis correctly 
points out, however, their result depends crucially on the assumption that capital depreciates 
fully after production, or its lifetime is just one period, which is essential to derive a closed form 
solution. Assuming that capital depreciates at a constant geometric rate, he shows that the 
relationship can be negative even when the risk-aversion coefficient is larger than unity.  
     On the contrary, Nakamura investigates the investment behavior of a risk-neutral firm under a 
different assumption of capital depreciation. As a result, it is shown that, if useful lifetime capital 
is shorter than the firm’s horizon, or capital depreciates fully after some production periods, the 
relationship between current investment and future price uncertainties can be negative even 
without irreversibility of investment: the usual explanation of such a negative effect.     
     To derive clear the result, no costs are assumed to adjust the capital stock in the models of 
Saltari and Ticchi and of Femminis although the adjustment costs are commonly employed in the 
investment literature. Also, the adjustment costs play no other role than determining the level of 
investment in Nakamura’s model. If the adjustment costs do not change the qualitative results, 
one can ignore them. However, if they play a key role in determining the sign of investment-
uncertainty relationship, we should take them into account.   
          The purpose of this paper is to highlight the role of adjustment costs in determining the 
effect of uncertainty on investment. For this, we reexamine the results of Nakamura paying 
attention to the curvature of symmetric adjustment costs of investment. If marginal products of 
capital are constant regardless of capital input, the result of Hartman (1972) and of Abel (1983), 
i.e. the negative investment-uncertainty relationship appears. If they are decreasing with capital 
input, on the contrary, various relationships between investment and uncertainty emerge even 
without irreversibility or asymmetric adjustment costs. More precisely, with symmetric and 
convex adjustment costs, the relationship depends crucially on the curvature of adjustment cost 
function. It is negative if the curvature is small while the relationship is positive if it is large. If 
the curvature is in between, the relationship is inverted U-shaped: positive at low values of 
uncertainty whereas negative at high levels of uncertainty.1  
 
 
2. The analytical framework 

We utilize the simple setup in Caballero (1991), with two differences: (i) lifetimes of capital are 
finite, and (ii) adjustment costs associated with investment are symmetric. Consider a firm facing 
an isoelastic demand function, ttt ZQP

ψψ )1( −

= , where )1( ≥ψψ  is a markup coefficient that takes 
unity under perfectly elastic demand,  and  are respectively the price and output of the 
good, and  is a stochastic term described by a lognormal random-walk process: 

tP tQ

tZ

                                                           
1 Sarkar (2000) also shows an inverted U-shaped investment-uncertainty relationship using a real 
option model.  
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where ),2(~ 22 σσε −Nt    with   0≥σ .                                                                             

          Technology is described by a Cobb-Douglas production function, , 
with 

γαα )( )1( −= ttt KALQ
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parameter. Assuming that labor is a variable input, the profit function, ),( tt ZKΠ , becomes 
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           Although most investment models assume that capital depreciates at a constant geometric 
rate, we assume that capital becomes fully obsolete after a finite lifetime. To simplify the 
analysis, we assume that the capital equipment can be in operation for only two periods, and 
hence the capital stock at period  is t
          .                                                                                                                (3)                               1−+= ttt IIK
Evidently,  and  do not exist together at the same time, but have some linkage via  
because  and 

1−tI 1+tI tI

1−+= ttt IIK ttt IIK += ++ 11 . This overlapping nature of capital goods yields the 
relationship between current investment and future uncertainties. 
          We will use the minimum framework to demonstrate the main issue. The firm is in place 
for three periods and does not invest in the last period. Assuming that it does not discount the 
future profits, the firm’s maximization problem becomes2

          ,                                    ])()([max 332221111, 21

μημημη KhZICIKhZICIKhZE tII
+−−+−−

                     subject to , 011 IIK += 122 IIK += , 23 IK = ,  
where  is given initial capital,  is an adjustment cost function of investment, and the price 
of capital is set equal to unity. We assume that the adjustment costs are not asymmetric but 
symmetric, which refers to the case in which the firm can adjust capital upward and downward at 
the same cost. Let us specify the adjustment cost function as follows: 

0I )(IC

          ,                                                                                                                   (4)    βγ IIC 1)( =
where 1≥β  and 1γ  is a nonnegative parameter. 
          The first-order necessary conditions for a regular maximum are 
          ,                                                                      (5a)           1

11
1

22
1

11 1][ −−− +=+ βμημη βγμμ IKZhEKhZ
          .                                                                (5b)            1

21
1

33
1

22 1][][ −−− +=+ βμημη βγμμ IKZhEKZhE
The interpretation of these conditions is straightforward. At the optimum, the sum of the 
expected marginal revenues of investment, the LHS, must be equal to its marginal cost, the RHS, 
for each equation. 
 
 

                                                           
2 The main results will not change if we introduce constant discount rates. 
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3. Perfect Competition and Constant Returns 

For now, it is assumed that the technology exhibits homogeneity of degree one with respect to 
capital and labor ( 1=γ ) and that demand is perfectly elastic ( 1=ψ ). Hence, the profit function 
is linear with respect to capital ( 1=μ ). Taking the fact into account that, if  is normally 
distributed, then 

xln
]}var[ln][lnexp{][ 2

1 xxExE += , the first-order conditions become 
          ,                                                                                         (6a) 1

1121 1)](1[ −+=+ βη βγσ IfhZ
          ,                                                                                 (6b)   1

11321 1)]()([ −+=+ βη βγσσ IffhZ
where }2)1(exp{)( 2

2 σηησ −=f  and . Here, we assume that })1(exp{)( 2
3 σηησ −=f 1>β  and 

01 >γ  for the second-order conditions to be satisfied.  
          In this case, as Caballero emphasizes, investment at each period does not depend on either 
past or future capital stocks, and this lack of “intertemporal linkage” does not depend on the 
firm’s horizon. From (6a), we have the positive investment-uncertainty relationship, or 

          0
)1(

)('
2

11

211 >
−

= −β

η

ββγ
σ

σ I
fhZ

d
dI .                                                                                             (7) 

This is consistent with Hartman (1972) and Abel’s (1983) conclusion for infinitely durable 
capital. Complete depreciation of capital has nothing to do with the sign of investment-
uncertainty relationship under the assumption of perfect competition and constant returns to 
scale. 
 
 
4. Imperfect Competition or Decreasing Returns 

When competition is imperfect ( 1>ψ ), or when technology exhibits decreasing returns to scale 
( 1<γ ), the profit function is a decreasing function of capital ( 1<μ ). Therefore, investment at 
each period depends on both past and future capital stocks:       
          ,                                              (8a) 1

11
1

2121
1

101 1))(()( −−− +=+++ βμημη βγσμμ IIIfhZIIhZ
          .                                                (8b)   1

21
1

231
1

2121 1)())(( −−− +=++ βμημη βγσμσμ IIfhZIIfhZ
From the above two equation, we have3                  
          )],,(),,(),,([][ 212121 σσσσ IIACIISUBIIHAsignddIsign t ++= ,                             (9)    
where 0))(()('),,( 2

2213221 >+= −μσσσ IIIffZIIHA , 
           0)(')(),,( 1

23221 <−= −μσσσ IffZIISUB , 
           0)1())(('),,( 2

2121221 >−+= −μββγσσ IIIfZIIAC , and 0)1( 1 >−−= ημμ hZZ .  
          The above equation shows that the total effect of uncertainty on investment is the sum of 
the Hartman-Abel effect, ),,( 21 σIIHA , the substitution effect, ),,( 21 σIISUB , and the 
adjustment cost effect, ),,( 21 σIIAC . Figure 1 also demonstrates this decomposition. An 
increased uncertainty increases the expected marginal revenue product of  (Jensen’s 
inequality argument) and hence increases the desired capital stock, thereby augmenting . This 
is the Hartman-Abel effect. 

2K

1I

[Insert Figure 1 around here] 
                                                           
3 See Appendix-A for the derivation. 
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          At the same time, an increased uncertainty increases . Since the shock to demand 
follows a random walk (in logs) in our specification of stochastic process, which is quite 
common in the literature, uncertainty at the third period is higher than at the second. A rise in 

2I

σ  
increases the marginal revenue product of  more than that of , thereby increasing  more 
than . Since  and 

3K 2K 3K

2K 122 IIK += 23 IK = , the firm increases  more than . Under decreasing 
marginal returns to capital, an increase in  decreases the marginal product of  at the second 
period, , since  and  are substitute (

2I 1I

2I 1I
1

21 )( −+ μμ II 1I 2I 1<μ ). Therefore, an increase in σ  has a 
negative impact on  through increasing . The substitution effect captures this channel.  1I 2I
          Without adjustment costs, the cost for increasing  is equal to that for increasing  
regardless of the sizes of  and . With convex adjustment costs, however, the marginal cost 
of  is larger than that of  if .  In general, with convex adjustment costs, firms try to 
distribute investments equally over the planning period to minimize the associated costs. This 
intertemporal smoothing effect of convex adjustment costs narrows the difference between an 
increase in  and an increase in .

1I 2I

1I 2I

2I 1I 12 II >

2I 1I 4 The smaller is an increase in , the smaller is the 
aforementioned substitution effect. This partial offset of the substitution effect via suppressing an 
increase in  is the adjustment cost effect. Importantly, without the adjustment cost effect, the 
substitution effect surely dominates the Hartman-Abel effect, and hence we have a negative 
relationship between investment and uncertainty for .

2I

2I

1I 5

 
PROPOSITION: If there is no increasing and convex adjustment cost associated with 
investment, an increased uncertainty reduces investment at the initial period. 
 
PROOF:   See Appendix-B. 
 
          With large convex adjustment costs, however, the sum of the adjustment cost and 
Hartman-Abel effects can dominate the substitution effect so that the sign of the investment-
uncertainty relationship becomes positive. Even though it is the fact with a small σ , the sign can 
be negative with a large σ . Since  increases more rapidly than  with 2I 1I σ , the substitution 
effect also increases sharply with σ . Hence, with a large σ , the substitution effect may 
dominate the sum of the other two effects so that the total effect becomes negative. Since the 
three effects depend crucially on σ , the sign of the investment-uncertainty relationship cannot 
be determined unambiguously even in our simple setup. We therefore have to use numerical 
results to illustrate the investment-uncertainty relationship. 
 
 
 
 

                                                           
4 Although we do not consider it explicitly in this paper, discount factors also have an “anti-
smoothing” effect. 
5 Nakamura (2002) derives the same result under the assumption of identically and 
independently distributed price shocks.  
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5. Numerical Analysis 

Throughout the numerical analysis, we assume that 2=η  and 5.0=μ ,6 and that, without loss of 
generality, . To confirm the aforementioned proposition, we start with the case without 
adjustment costs: 

11 =ημhZ
01 =γ . As Figure 2(A) shows, investment decreases with uncertainty. When 

adjustment costs increase rapidly with investment, on the contrary, investment is expected to 
increases with uncertainty. From Figure 2(B), where 05.01 =γ  and 2=β , we can verify the 
finding.   

[Insert Figures 2(A), (B), and (C) around here] 
          Figure 2(C) shows the investment-uncertainty relationship when adjustment costs increase 
with investment but not rapidly: 005.01 =γ  and 2=β . In this case, investment increases with 
σ  initially. However, after a certain point (around 25.0=σ ) it decreases with σ . These 
observations are consistent with our analysis.  
 
 
6. Conclusion 

This paper has investigated the role of symmetric adjustment costs of investment under the 
assumption that capital depreciates completely after finite periods. Suppose that marginal returns 
to capital are constant. Then the conclusion of Hartman (1972) and of Abel (1983) holds that 
greater future uncertainty increases current investment regardless of the curvature of adjustment 
cost function. 
          In contrast, when marginal returns to capital are decreasing, the investment-uncertainty 
relationship depends crucially on the curvature of adjustment costs. When there are no convex 
adjustment costs, higher future uncertainty lowers current investment, even without 
irreversibility of investment. With a high curvature, on the contrary, the conclusion of Hartman 
and of Abel holds. In addition, if the curvature is not high, current investment is initially 
increasing and then decreasing with uncertainty.    
          In order to demonstrate the role of adjustment costs in determining the investment-
uncertainty relationship, the simple assumptions are employed that capital lives two periods, and 
that the firm’s horizon is three periods. Needless to say, it is very important to investigate what 
happens to the investment-uncertainty relationship under more realistic assumptions: longer life 
of capital and a more distant horizon of the firm. Also, the lifetime of capital should be 
endogenously determined by the firm. Mauer and Ott (1995) have taken an important step along 
this line. 
 
 
 
 
 
 
 
 

                                                           
6  For example, 32=α , 1=γ  and 34=ψ  in the imperfect competition case, or 32=α , 

43=γ  and 1=ψ  in the decreasing returns to scale case. 
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Appendices 

Appendix-A: Derivation of (9): 

          Let us totally differentiate (8a) and (8b), and express them in a matrix form: 

          , σd
b
b

dI
dI
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⎦
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⎡

2

1

2

1
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where 2
11

2
212

2
1011 )1(}))((){( −−− −−+++−= βμμ ββγσ IIIfIIZa , 

           2
2122112 ))(( −+−== μσ IIfZaa , 

           2
21

2
23

2
21211 )1(})())(({ −−− −−++−= βμμ ββγσσ IIfIIfZa , 

           , , 1
21111 ))((' −+= μη σμ IIfhZb })('))(('{ 1

23
1

21212
−− ++= μμη σσμ IfIIfhZb

           and 0)1( 1 >−−= ημμ hZZ .   
The second-order conditions are 011 <a , 022 <a  and .  02

122211 >−=Δ aaa
          Using Cramer’s rule, we obtain: 

          )},,(),,(),,({)(
212121

2
2111 σσσμ

σ
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d
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Δ
+

=
−

.                   

Since Δ+ −2
211 )( μημ IIhZ  is positive, we have (9). 
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Appendix-B: Proof of Proposition 

By definition, 
          })(')())(()('{),,(),,( 2322132

2
21010 IffIIffIZIISUBIIHA σσσσσσ μ −+=+ − . 

Since , 2
23 )()( σσ ff = )()1()(' 22 σσηησ ff −= , and ,  2

23 )()1(2)(' σσηησ ff −=

          )()()1(),,(),,( 21
3

2
2

21010 IIfIZIISUBIIHA −−=+ − σσηησσ μ . 
Therefore, 
          ][)],,(),,([ 211010 IIsignIISUBIIHAsign −=+ σσ .          
Subtracting (8b) from (8a), we have 
          })()){(( 1

23
1

1011
1

2
1

1
−−−− −+=− μμηββ σβγμ IfIIhZII , 

where  is a nonnegative constant and 0I 01 >γβμ ηhZ . Therefore, 
          .          ])()[(][ 1

23
1

10
1

2
1

1
−−−− −+=− μμββ σ IfIIsignIIsign

Suppose that . Then, , and  since 21 II ≥ 01
2

1
1 ≥− −− ββ II 0)()( 1

23
1

10 <−+ −− μμ σ IfII 1)(3 >σf  
when 0>σ  . These two inequalities contradicts the above equation. Instead, suppose that 

 and therefore . Then  can be either positive or 
negative. Hence,  must hold as long as 

21 II < 01
2

1
1 <− −− ββ II 1

23
1

10 )()( −− −+ μμ σ IfII

21 II < 0>σ . Hence, we have 
0),,(),,( 2121 <+ σσ IISUBIIHA   when 0>σ .                                             

 
 
 
          Figure 1: The Decomposition of the Effect of Uncertainty on Investment 
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          Figure 2: Investment as a Function of Uncertainty  
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(A) When 01 =γ  
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(B) When 05.01 =γ  
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(C) When 005.01 =γ  


