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Abstract

If a finite two person game form has the property that every 2-by-2 fragment is Nash
consistent, then no derivative game admits an individual improvement cycle.
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1 Introduction

Shapley (1964) showed that if every 2× 2 submatrix of a payoff matrix possesses a saddle

point, then the whole matrix also possesses a saddle point. Such matrices were studied

by Gurvich and Libkin (1990). The result does not extend even to bimatrix games.

The purpose of this note is to show that a strengthened version of Shapley’s theorem

holds for bimatrix game forms: If a finite two person game form has the property that

every 2 × 2 fragment is Nash consistent, then no derivative game admits an individual

improvement cycle (hence the whole game form is Nash consistent as well).

The notions of individual improvement paths and cycles are taken from Monderer

and Shapley (1996). If a finite strategic game admits no improvement cycle, then every

fragment possesses a Nash equilibrium. The converse does not hold even for two person

games (Takahashi and Yamamori, 2002). For two person game forms, however, it happens

to hold; whether it is valid for more than two players remains an open question.

Nash consistency of a game form satisfying our condition can be derived from the

existing literature (Vladimir Gurvich, personal communication): If the players are given

arbitrary antagonistic preferences, then the derivative game possesses a saddle point by

Shapley (1964); by Moulin (1976), the game form must be tight; by Gurvich (1988),

it is Nash consistent. However, the absence of improvement cycles is a much stronger

requirement. Several examples of such game forms are given in Kukushkin (2002). Theo-

rem 1 from that paper describes a class of games with perfect information satisfying the

requirement; the class contains Rosenthal’s (1981, Example 3) centipede game (the last

observation is due to Dave Furth).

Milchtaich (1996) introduced a more restrictive notion of a best response improvement

path (cycle). Kukushkin (2004) obtained natural sufficient conditions for the absence of

such cycles in a strategic game; the conditions do not ensure the absence of any im-

provement cycle. Corollary 2 below shows that, as long as two-person game forms are

considered, there is no difference between the two kinds of acyclicity.

Section 2 contains the basic definitions and the formulation of the main result; its

proof is in Section 3. Possible extensions and open questions are presented in Section 4.

2 Formulation

A finite game form G is defined by a finite set of players N , a finite strategy set Xi for each

i ∈ N , a finite set of outcomes A and a mapping g : XN → A, where XN =
∏

i∈N Xi is the

set of strategy profiles. Once preferences of the players over the outcomes are specified,

and we always assume this to be done with a list υN of ordinal utilities υi : A → R, i ∈ N ,

a derivative game G(υN) emerges, in which the set of players is N , the strategy sets are

1



Xi’s and utilities are ui(xN) = υi(g(xN)).

A strategic path is a finite or infinite sequence {xk
N}k=0,1,... of strategy profiles such

that xk+1
N and xk

N differ in the choice of just one player. A strategic cycle is a strategic

path x0
N , x1

N , . . . , xM
N such that x0

N = xM
N and M > 0. A strategic cycle is an improvement

cycle in a derivative game G(υN) if ui(x
k+1
N ) > ui(x

k
N) whenever xk+1

N and xk
N differ in xi.

If, additionally, xk+1
i is a best response to xk

−i, we have a best response improvement cycle.

A game form G is acyclic if no derivative game G(υN) admits an improvement cycle.

A game form G is Nash consistent if every derivative game G(υN) possesses a Nash equi-

librium. Since we only consider finite games, every acyclic game form is Nash consistent.

When considering two person game forms, we assume N = {1, 2}. Moreover, we

usually view player 1 as the representative player.

Lemma 1. A two person game form with X1 = {x′1, x′′1} and X2 = {x′2, x′′2} is Nash

consistent if and only if {g(x′1, x
′
2), g(x′′1, x

′′
2)} ∩ {g(x′1, x

′′
2), g(x′′1, x

′
2)} 6= ∅.

Proof. The sufficiency immediately follows from Gurvich (1988); the necessity, from

Moulin (1976). Both are easy to check by themselves. Note that every Nash consistent

2× 2 game form is acyclic.

A fragment G′ of G is a game form with the same set of players N and nonempty

subsets ∅ 6= X ′
i ⊆ Xi for all i ∈ N . If G is acyclic, then so is every fragment of G; Nash

consistency need not be “inherited” in this sense.

Remark. Shapley (1964) employed the term “subgame,” but since then it has become

widely used in the literature on extensive games with a different meaning.

Theorem 1. A finite two person game form G is acyclic if and only if every 2×2 fragment

of G is Nash consistent.

The necessity is straightforward; the sufficiency proof is deferred to the next section.

3 Proof

Till the end of the proof, we assume to the contrary that there is a strategic cycle

x0
N , x1

N , . . . , xM
N = x0

N which becomes an improvement cycle in a derivative game G(υN).

Without restricting generality, we may assume that there is no shorter improvement cycle

in any derivative game, hence the improvements of both players alternate along the cycle,

hence M = 2m. Since every 2× 2 fragment is Nash consistent, m > 2.

Since the cycle could be started from any position, we assume that x2k+i
i 6= x2k+i−1

i for

all k and both i. We denote K = {0, . . . , m − 1}, Ξi = {x2k+i
N }k∈K for each i ∈ N , and

Ξ = Ξ1 ∪ Ξ2.
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Step 1. If i ∈ N , k, h ∈ K, and x2k+i
i = x2h+i

i , then k = h.

Proof. Suppose the contrary: there are k > h such that x2k+1
1 = x2k+2

1 = x2h+1
1 =

x2h+2
1 . If u2(x

2k+2
N ) ≥ u2(x

2h+2
N ) [> u2(x

2h+1
N )], then x0

N , . . . , x2h+1
N , x2k+2

N , . . . , x2m
N = x0

N

is a shorter improvement cycle in G(υN). If u2(x
2h+2
N ) ≥ u2(x

2k+2
N ) [> u2(x

2k+1
N )], then

x2k
N , x2k+1

N , x2h+2
N , . . . , x2k

N is again a shorter improvement cycle in G(υN).

We denote B = g(Ξ), B0 = g(Ξ1) ∩ g(Ξ2), and, for each i ∈ N , Bi = g(Ξi) \ B0 and

Y i = g−1(Bi) ∩ Ξ. By definition, B1 ∩ B2 = ∅. We define υ∗i : υ∗i (a) = maxb∈B υi(b) for

a ∈ Bi; υ∗i (a) = minb∈B υi(b) for a ∈ B3−i; υ∗i (a) = υi(a) otherwise. It is easy to see that

Argmax
b∈B

υ∗i (b) = Bi = Argmax
b∈B

υ∗3−i(b) (1)

and that x0
N , x1

N , . . . , x2m
N = x0

N is an improvement cycle in G(υ∗N) as well.

Step 2. For each i ∈ N , the set Y i is a singleton (hence Bi is a singleton as well).

Proof. First, we note that Bi 6= ∅ for each i ∈ N by (1). Let g(x2k+1
N ) ∈ B1 3 g(x2h+1

N )

and k > h; note that x2k+1
2 = x2k

2 and x2h+1
2 = x2h

2 . Applying Lemma 1 to the fragment

{x2h+1
1 , x2k+1

1 }×{x2h
2 , x2k

2 }, we obtain that either g(x2k+1
1 , x2h

2 ) ∈ B1 or g(x2h+1
1 , x2k

2 ) ∈ B1.

In the first case, x0
N , x1

N , . . . , x2h
N , (x2k+1

1 , x2h
2 ), x2k+2

N , . . . , x2m
N = x0

N is an improvement

cycle in G(υ∗N): u∗1(x
2k+1
1 , x2h

2 ) > u∗1(x
2h
N ) because g(x2h

N ) /∈ B1 3 g(x2k+1
1 , x2h

2 ); u∗2(x
2k+2
N ) >

u∗2(x
2k+1
1 , x2h

2 ) because g(x2k+2
N ) /∈ B1. In the second case, x2h+2

N , . . . , x2k
N , (x2h+1

1 , x2k
2 ), x2h+2

N

is an improvement cycle in G(υ∗N) for similar reasons. In either case, we obtain a contra-

diction with the assumption that a shorter improvement cycle is impossible.

Since m > 2, Step 2 immediately implies B0 6= ∅. We also see that each υ∗i actually

coincides with υi. Henceforth, we use the notation Y i = {yi
N}.

Step 3. There is i ∈ N such that y1
i = y2

i .

Proof. Since we can start the cycle anyplace, we assume that y2
N = x0

N . Suppose to the

contrary that y1
N = x2k+1

N with 0 < k < m − 1. Applying Lemma 1 to the fragment

{x0
1, x

2k+1
1 } × {x0

2, x
2k
2 }, we obtain that one of the following four alternatives must hold.

If g(x0
1, x

2k
2 ) = g(y1

N), then x0
N , x1

N , . . . , x2k
N , (x0

1, x
2k
2 ), x0

N is an improvement cycle in

G(υN). If g(x0
1, x

2k
2 ) = g(y2

N), then x2k+1
N , . . . , x2m−1

N , (x0
1, x

2k
2 ), x2k+1

N is an improvement

cycle. If g(x2k+1
1 , x0

2) = g(y1
N), then x0

N , (x2k+1
1 , x0

2), x
2k+2
1 , . . . , x2m

N = x0
N is an improvement

cycle. If g(x2k+1
1 , x0

2) = g(y2
N), then x1

N , x2
N , . . . , x2k+1

N , (x2k+1
1 , x0

2), x
1
N is an improvement

cycle.

As in the proof of Step 2, we have a contradiction with the assumption that a shorter

improvement cycle is impossible.
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We are approaching a final contradiction. Supposing, without restricting generality,

that y1
2 = y2

2, we pick a ∈ Argmaxb∈B0
υ1(b); by definition, there is k ∈ K such that

g(x2k
N ) = a. Since u1(x

2k+1
N ) > u1(x

2k
N ), we must have x2k+1

N = y1
N ; but then x2k

N = y2
N by

Steps 3 and 1, hence g(x2k
N ) /∈ B0.

4 Extensions

Corollary 1. Let G be a finite two person game form. If no antagonistic derivative game

G(υ,−υ) admits an improvement cycle, then G is acyclic.

Proof. Since the necessity in Lemma 1 was proven with a reference to Moulin (1976),

where antagonistic utilities were considered, we obtain that every 2× 2 fragment of G is

Nash consistent. Now our Theorem 1 applies.

Corollary 2. Let G be a finite two person game form. If no derivative game G(υN)

admits a best response improvement cycle, then G is acyclic.

Proof. If G is not acyclic, it contains a fragment {x′1, x′′1}× {x′2, x′′2} such that {g(x′1, x
′
2),

g(x′′1, x
′′
2)} ∩ {g(x′1, x

′′
2), g(x′′1, x

′
2)} = ∅. We define υ1(g(x′1, x

′
2)) = υ1(g(x′′1, x

′′
2)) = 1 and

υ1(a) = 0 for a /∈ {g(x′1, x
′
2), g(x′′1, x

′′
2)}; υ2(g(x′1, x

′′
2)) = υ2(g(x′′1, x

′
2)) = 1 and υ2(a) = 0

for a /∈ {g(x′1, x
′′
2), g(x′′1, x

′
2)}. Clearly, the fragment becomes a best response improvement

cycle in G(υN).

When there are more than two players, the straightforward analogue of Theorem 1

does not hold.

Example. Let us consider a three person 2×2×2 game form with four outcomes, where

player 1 chooses rows, player 2 columns, and player 3 matrices:
[
a c

a b

] [
a d

b b

]
.

Applying Lemma 1, we immediately see that every 2 × 2 fragment is Nash consistent.

On the other hand, let us consider the following utilities: υ1(c) = υ1(d) = 2, υ1(b) = 1,

υ1(a) = 0; υ2(b) = υ2(c) = 2, υ2(a) = 1, υ2(d) = 0; υ3(a) = υ3(d) = 1, υ3(b) = υ3(c) = 0.

It is easily checked that, at each strategy profile, there is a single player capable of

improvement: [
2 3

2 1

] [
1 2

3 1

]
,

hence there is no Nash equilibrium. Therefore, the game form is not even Nash consistent.

Hypothesis. A finite game form G is acyclic if and only if every fragment of G is Nash

consistent.
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