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Abstract

This article considers a model of spatial competition where firms and consumers are located
in a semicircular space rather than in the whole circle (Salop’s model) or the linear city
(Hotelling’s model), under the assumptions of both, convex and concave, transportation
costs. The paper tries to generalize the results of the two previous models. We find that for
concave transportation costs the existence of a price equilibrium is warranted for every firms’
location when the length of the semicircular space is greater than 3/4. For the convex case,
perfect equilibrium is only obtained when the size of the market segment is equivalent to
Hotelling's linear model.

Financial support from the Spanish Ministry of Education under research project number SEJ2005-05206/ECON is gratefully
acknowledged.

Citation: Hamoudi, Hamid and Marta Risuefio, (2007) "A synthesis of location models." Economics Bulletin, Vol. 3, No. 30 pp.
1-15

Submitted: May 4, 2007. Accepted: July 8, 2007.

URL: http://economicsbulletin.vanderbilt.edu/2007/volume3/EB-07C70009A.pdf


http://economicsbulletin.vanderbilt.edu/2007/volume3/EB-07C70009A.pdf

1.-Introduction

When studying spatial competition, two standard et®dhave been considered
in the literature, the linear model, first studied Hotelling (1929), and the circular
model as popularized by Salop’s (1979).

The linear model is usually used when the problewteu consideration is such
that locations of firms is a priori heterogenedusyever, market boundaries do lead in
certain situations to existence problems that doappear in the circular model for the
same type of assumption©On the other hand, the circular model is preteméen
firms’ locations can be considered homogeneouss lised to study some market
configurations such as locations of stores a longjty belt way, airlines choosing
departure times on the dial of a clock, etc. Howgeirethese types of circular market
configurations, there are situations in which therket is discontinuous.

Many environmental policies involve the introductiof restrictions on market
configuration by the regulating authorities. Foraewle, in most urban designs, we
observe the existence of portions of land locaredirad the city belt-ways devoted to
non-residential purposes. We can find environmgntgrotected areas, parks,
recreational facilities, etc. When considering urlmesign, regulators have to decide
whether they should leave some part of urban landthis type of recreational
activities, and if they do so, what is the optinséde of these non-residential areas.
Similarly, in order to control for noise pollutiomany airports located near cities have
introduced limits on take offs and landings duroggtain hours of the night, therefore,
imposing time restrictions on the services offelbgdairlines.These physical or time
zones represent a discontinuity in the market simesther consumers nor firms can be
located within them; however, it is possible todfinonsumers and firms adjacent to
both ends of these restricted areas.

In order to study the implications of this type mfarket configurations, we
assume a circular spatial model, where there isgaent where people live and firms
locate, that we shall refer to as the market, amotheer segment where no market
activity takes place. In this context, a three-stggme can be considered in which in
the first stage the regulator chooses the sizén@fmarket, in the second stage firms
choose locations and in the third stage firms campeprices. We will suppose that the
regulator chooses the length of the market in asimiegic mannér therefore, the
model we present, once market size is given, caretheced to a two-stage game in
which firms first choose location, and then competprices.

This model can be thought of as a synthesis ofctteular and linear spatial
models. If the size of the market is half of thecaemference,l/2, the model is
equivalent to Hotelling’s (1929) linear city, whiiiethe size of the market is the whole
circle, I, we are in Salop’s (1979) configuration. We analylze existence of a price
equilibrium when the market segmeintjs restricted to be less thar(See figure 1)

We will make the standard assumptions of two firseing a homogeneous
product, consumers evenly distributed a long thekatasegment, and we will study the
existence problem in our model, using a concavetifon that ensures the existence of a
perfect equilibrium in pure strategies in the dacumodel (see De Frutos et al, 1999).

We find that there exists a subgame perfect praeslibrium for any location of
firms provided the length of the market is gredbamn approximately, . Furthermore,

this equilibrium is unique and implies firms locagi opposite to each other. Hfis

! For example, when 3 firms are considered, or vithertransportation costs considered is concave.
% In the sense that the regulator does not optimnizebjective function to choose market size.



smaller thary; , we find that, for certain values bfand firms locations, there is a strip

where no price equilibrium may exist. Nevertheldbgre are many combinations of
market sizes and firm locations for which equiliion can be obtained. When we
compare the intensity of competition, given theesf the market, we find that
competition is more intense for low valueshpfind the equilibrium region is smaller.

We also study the model under convex transportatmsts and we find that
perfect equilibrium can only be obtained for valugsh for which our model is
equivalent to Hotelling’s linear city.

The paper is organized as follows, in section Zvesent the model, in section 3
we study the existence of equilibrium, section #itams the conclusions, and finally
major proofs and graphs can be found in the apgendi

2.- TheMode

We consider a circular city of lenglhwhere the regulator chooses the size of the
market,h, so that firms and consumers can only be located certain segment of the
circle h<l. There are two firms selling a homogeneous produith zero production
costs, located atandy, withO< x<y<h.

Consumers are evenly distributed aldn@nd each consumer buys a single unit
of this product per unit of time, irrespective db iprice. Since the product is
homogeneous, consumers will buy from the firm wiffers the least delivered price,
that is, the mill price plus transportation costet p;, p., denote the mill prices charged
by firms located ax andy, respectively. The distance between consuraerd firmi is

given byd; =|z-i|, i =x,y. We will consider a concave transportation costscfion

from the linear quadratic familyc(d) = k(di-d) that have been shown to ensure
existence of a perfect equilibrium in pure stragsgin the circular model. Although
firms and consumers can only be located withjnconsumers can travel along the
whole circle and they will always take the direntithat implies the shorter distance to
the chosen firm.

The model described above, given that the reguladbaves in a non-strategic
manner, does give rise to a two-stage game in wiicts first decide simultaneously
their location and then simultaneously choose pritte¢urns out that the solution to this
game depends critically on the length of the magegimenth. In order to determine
the market boundaries and derive the demands taceach firm, we will have to find
the indifferent consumers. A consumer is indifférem buying from one firm or the
other if and only if:p, + C(d,) = p, + C(d,) .

To analyze the problem, we will assume, withouslo$ generality that in the
expression of the transportation costs functiéns 1, and the total length of the circle,
[, is equal tolWhen the market length considered is the wholeleciSee figure 1),
three types of possible indifferent consumers amend, each one belonging to a
different segment of the circumference given byf{l[x, y], m, O[y, 1], and m, OJ[O,

X].

Taking into account that the market is equah it < 1), and depending on the

price interval considered, we obtain the followahgmand function for firm1.:

h for p,-p,01l,
m +(h-m,) for p—-p,0l,
D, =qm, for p,-p, 0l
m, —m, for p,-p,01,
0 for p,—-p,0l; 2



Where:

l, =[-o-20-2), 1, =[-20-2).,2h-q-D], 1, =[2(2h-q-D,20-q)],
I, =[z-q),z@- 2)],1; = [z~ 2),+]

Wherez=x,-x and Q=X +X,

Demand for firm 2 can be obtained Bs = h-D,.

3.- Equilibrium

Given the size of the markdt, and using the usual approach for a two-stage
non-cooperative game in which firms select a pogitiat the first stage and
subsequently set their prices, we study the subgmarfect equilibrium. We recall that a

perfect price-location equilibrium is defined apair(plN XN ) (p;“ : yN) such that:

() pY=pM(x"y".h) andp) = pX(x",y".h),

iy JBOC YRRl ¢yt g (x Ly ) 2 By v b pl (¢ v ), g (X y " )
B,(x",y",hpl (X", y" ), py (X, y™,h) 2 B, (x", y, h, pr (x", y™, h), py (XY, v, h))

Dy,xD[O,yz] :

Where (p', py )is a Nash equilibrium in the price subgame whenldlations choice

is fixed.

The profit function for firmi is given byB; - p; D;, i =1,2. It can be easily observed that

this profit function is not concave in prices ($ke expression for the demand function

above) and it may exhibit different configuratiofrs particular, it could exhibit several

local maxima. Therefore, the sufficient conditioor fa price equilibrium for any

possible location of firms is not satisfied, altgbudepending on the values :fg and

h, we could find combinations of market sizes and $ifocations for which equilibrium

may be obtained. In order to explore this poss$ibive will reduce the number of

parameters to two by assuming that 0 and0<y< 1/2 In this case, we only have

two indifferent consumersn U[x, y], m, U[y, 1] while m, [0, X], disappears since=

0. Consequently, the new demand function for firoat be written as:

h for p,-p,0l;
D. = ml"'(h_mz) for pl—pZDI§
Fom for p,-p, 013
0 for p-p,01;
Where:
I}=[-o-ya-y)],  1i=[-y@-y)y@eh-y-2],  1i=[y@h-y-1).ya-y),

11 =[y@-y),+o]

We will now compute the equilibrium of the pricebgame.



The expression for the profit functions for firmslgiven by:

hpl for P~ P, O Ill

. p.( iy 2 ) p.-p, 015
1 = _

o g;l_pz)% ) for  p-p, 013

y _ 1

0 for PP, 0l

The profit function is not concave in prices andcduld exhibit different
configurations. In particular, it may exhibit onete/o local maxima. Depending on the

values ofy two cases may arise, one in which the global aatinbelongs to regiold,
and another in which the global optimum belongs to

3.1.- Equilibrium in Region 12

For this prices interval two indifferent consumessist.Computing the first order
conditions for the profit functions i, we obtain:

pYEZya-y@h-D  and  B(p" )= 1—18 y(1- y)(4h-1)?

1 1
e ~3 y@d-y)(2h+1) and B,(p;", p,") = 18 y@d-y)(2h+1)?

Proposition 1: The pair(p,"* (0,y,h), p,* (0, y,h ))xonstitutes a Nash equilibrium if and
1+2
h=h,, where,h,(y) = \/g}

4y

only if (h,y)OR,, where:R = {(h, y)

Proof: See Appendix

Proposition 2: There exists a subgame perfect price-locationibgum if and only if
h>0,733and then, this equilibrium is unique and is givgn b

N 1 N N 4h_1 N N 2h+1
= 01 1h = ) 0, ,h =
y 5 p. (Oy".h) 12 p, (O.y".h) 17

Proof: See Apendix.

3.2.- Equilibrium in Region 13

For this prices interval only one indifferent comser exists.Computing the first order
conditions for the profit functions i, we obtain:

Pt =Z-y)@h+y)  and  B(ppMY)= 1—18 (1-y)(2h+y)?



1 1
po* =5 A-y)(4h-y)  and  B(p* p%) = o A-Y)(4h-y)®
Proposition 3: The pair(p*? (0, y,h), py'* (0, y,h ) constitutes a Nash equilibrium if and

only if (h,y) OR,, Where:R, = {(h, y)| h<hy, where,h,, :_2¥((;3++>/1))}
y

Proof: See Appendix.

Corollary: if h<0,733, there is no price equilibrium in regiéhdefined by:
R={(h,y)/h.(y) <h<h,,(y)}

Proof: R is the intersection of the two complements of sagR andR,. Figure 6

combines the two equilibrium regions depicted ia grevious two figures. As can be
seen from the graph, there is only a narrow sthipn& no equilibrium exists.

In figure 4, the equilibrium area for regidgis depicted, all points in the shaded
area are possible equilibria. Note that foe O, #88e exists a price equilibrium for
every possible location of firm 2. When we looktla¢ optimal location of firm 2 in
regionl}, when there are two indifferent consumers, we fimat firm 2 benefits from
moving away from firm 1 and locating at the oppedibundary of the market segment
where my exists. The result is equivalent to what we obtaimen we consider the
complete circular model: there are two indiffereahsumers and firms locate opposite
to each other and equidistant to the two indiffe@nsumers. However, in our model
the competitive situation of the two firms is nbetsame, since we have had to fix the
location of firm 1 in order to reduce the numbempafameters. Firm 1 is located at the
edge of the non-residential area, and therefore $ide of its potential market is
restricted, as a result, firm 2 may charge a lapgiee and obtain larger profits than firm
1.

Figure 5 shows the equilibrium area for redibnAll points belonging to the
shaded area (above the lime y), are equilibrium candidates.
When we look at the optimal location of firm 2 irhig region, we find

that% :%(4h— y) > 0and therefore, firm 2 will tend to move away fromnf 1. In
y

regionl: there is only one indifferent consumer and theketaresembles the linear city
case, given that firm 1 is fixed at 0, firm 2 wilhoose to locate at the other market
extreme.

If we look at the prices differences of the two iétium regions we obtain:

DM = pM - pM = _2y(1_3Y)(1_ h) <0, DM?=p]? - p)? = _ZY(l_g)(h_ y) <0
We can see that, in both cases, the price of fitmistnaller than that of firm 2, this can
be explained, as mentioned above, in terms of mamefiguration since firm 2 has
more potential customers than firm 1.

Also, when we compare the prices differences it begions D" andD"?, we

find that: DM - p? = Z2Yd= y)(g(l_ N*2Y) 50 for all (h,y), so D™ >D". This

implies that the intensity of competition is strengn the second case than in the first




one. This is not surprising since market size isllEmin the second case than in the
first and this must induce stronger competitionisT¢an explain why the equilibrium
region of the second case is smaller than thedmrst

Convex Transportation Costs

We have also studied the convex transportatiorsdasiction:C(d) = kd?. This
function was shown to be strategically equivalen€(d) = k(di-di?) when the whole
circle is being considered (see De Frutos et &912001). However, when the market
is restricted to be a semicircle this result bredden. We find that the structure of the
demand function varies substantially from the ceorct the convex case, as we will
expose Now:

Let C(d) = kdi?and that = k= 1, x < . In this case, and for the whole circular
market three types of indifferent consumers may dletainedn, D[O,x+%],

nzD[x+%,y+%] and n3D[y+%,l]. However, when we restrict the length of the

market toh, we obtain the following cases:
Case 1:h D[y,x+%]. Then the indifferent consumenms nz do not belong to the

market, therefore there is only one indifferent ssaner,n;. In this case we have a
perfect equilibrium. This result is equivalent totElling’s linear model with quadratic
transportation costs, as studied by D’ Aspremonalet(1979); where firms choose
maximum differentiation.

Case 2:hO[x+1,y+1]. Then there exist two possible indifferent constsme andn,

and the demand function is piecewise linear witlr fdifferent domains ([1] the whole
market is for firm1,[2] market boundaries are deti@ed by the indifferent consumers
n; andny, [3] market boundaries are determined by onlyiadéferent consumern; or
ny. [4] the whole market is for firm 2). In this cagbere is no price equilibrium for
every possible firms’ locations and every valud.of

Case 3:h D[y+%,1]. Then either two indifferent consumers will ex@shultaneousliy;

andn, or n; andng, or justn, and the demand function is piecewise linear wiwke f
different domains ([1] the whole market is for fitfi2] market boundaries are
determined by the indifferent consumers; and n, [3] market boundaries are
determined by only one indifferent consumas, [4] market boundaries are determined
by the indifferent consumers, andns, [5]the whole market is for firm 2). As in case 2,
there is no perfect equilibrium.

4.- Conclusions

In this article we propose a circular model of sdatompetition in which the
market is restricted in order to allow for a nosidential area. Aside from this
discontinuity in the market, we make standard aggioms and use the two linear
guadratic functions (concave and convex cases)haae been proven to ensure the
existence of price equilibrium in the circular mbde

We find that, unlike when the whole circle is calesied, this two transportation
costs functions are not strategically equivalenheW concave transportation costs are
assumed, we obtain that provided the regulator se®the size of the market segment
to be greater than approximatgly (h=>0,733),there is a subgame perfect price-

location equilibrium and this equilibrium is uniquen the other hand, if market size is



chosen to be less thgn for certain values af and firms locations, there is a narrow

strip where no price equilibrium may exist. As Us@guilibrium failure is due to the
non-concavities exhibited by profit functions.

When convex transportation costs are assumed,gbedeilibrium can only be
obtained forh [ [y, x+%]. This case is equivalent to Hotellings’ linear rabd



5.-Appendix

Proof of Proposition 1:

In order for(p,**, p)"* )to be a price equilibrium, the following conditiomaist be met:
M) P -0 0l

(i) B(p" P> ) 2By (p,, p,")0p,

(iii) B,(p" p2") 2 By(p™, p,)0p,

Condition (i) Implies that:
a) -y@d-y)< p't - p)*t Which is always true, and
b) pi* - p;" < y(2h-1-y)

L+5y)
2(2 + y)

So (p/*, py* )could be a Nash price equilibriumyifandh belong to the set:
R.={(h.y) h=h,}

In order to verify condition (ii) we have to chedkr p."given, what is the maximum

Which holds if and only if:h>h,,, where h, =

p,” for B,(p,", py*)in 15 which is reached at:

N1

a) p, =pa"+y(2h-y-1), in this case we havdBl(plNl, p) ) >Bl(p1m, pyl)

b) p,’ =%y(1— y)(2h+1), Where p, > p)* +y(2h—-y-1), and the profit function for
firm 1 is given by:B(p,, p)") =1—18(1— y)ly@+h) J?, some simple calculation then show

that Bl(plm, pz“‘l)z Bl(plm, ple) for all (h,y)such thath>h,, where hlZ:M

4-\y
In order to verify condition (iii) we have to caroyt the same analysis for firm 2:

Given p/'*, the profit function of firm 2,Bz(p1N1,p2) has only one maximum for

p, O[o,+), that is reached ap’= p)*, thus we haveBz(plNl, p;“)z Bz(plNl, pz)Dp2 :

Therefore, combining conditions i, ii, iii, we obtathat(p", p,"* )is a Nash price

equilibrium forh>h, andh=h,.



However, we also verify that,>h,>y, (See figure 3), thereforgp*!, p)* iga Nash

price equilibrium in the regioR, defined as:

R ={(h.y) h=h,} (See figure 4)

Proof of Proposition 2:

From proposition 1, there exists a price equilibriufh>h,(y), however, simple
ohy, _ 9

by 2/y@-y)’
V2 +2
a42-1

there exist a price equilibrium for any firms lacat

calculations show thah,,(y)is increasing >0) and reaches a

= 0,733, thereforelh=0, 733

maximum fory:% (see figure 4) anlqz(%):

If we look at the optimal location of firm 2 (givehat the location of firm 1 is

fixed at 0) we find that%:o =y=y" :%. Substituting y by % in the
y

expressions of
p*(0,y,h) andp;* (0, y,h )we obtainp;' (0, y",h) = 422_ SRy 22; &

Proof of Proposition 3:

In order for(p}*?, p)'* )to be a price equilibrium, the following conditiomsist be met:
() p*-p* Ol

(i) B(p* p2*) 2 Bi(py, P2 ) 0P,

(i) B,(pr”, p2*) 2 By(py'”, po)OIP,

Condition (i’) implies that

-1-vy)< pN?-ph2 ' ' ifh< :M
a)y(2h-1-y)< p, ' “ - p, ° Which holds if and only ith< h,, whereh,, 22y +1)

b) p'* — p}'* < y(L- y) Which is always true.

So (p)'?, py'? )could be a Nash price equilibriumyifindh belong to the set:
R ={(hy)| h<hy}

In order to verify condition (ii’),

Givenp)'?, and considering,,, we verify thaB,(p,, p,'> Jadmits a global maximum

inp, = p1N2 :



condition (iir’),
Similarly, givenp'?, and considering,,, we verify that B,(p,'%, p, dmits a global

maximum inp, = p.'*.

Finally,(p'?, pb'?)is a Nash price equilibrium in regi® defined as:

R, ={(h,y)ly sh<h,} (See figure 5)

10
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