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Abstract

This article considers a model of spatial competition where firms and consumers are located
in a semicircular space rather than in the whole circle (Salop’s model) or the linear city
(Hotelling’s model), under the assumptions of both, convex and concave, transportation
costs. The paper tries to generalize the results of the two previous models. We find that for
concave transportation costs the existence of a price equilibrium is warranted for every firms’
location when the length of the semicircular space is greater than 3/4. For the convex case,
perfect equilibrium is only obtained when the size of the market segment is equivalent to
Hotelling's linear model.
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1.-Introduction 

When studying spatial competition, two standard models have been considered 
in the literature, the linear model, first studied by Hotelling (1929), and the circular 
model as popularized by Salop’s (1979).  

The linear model is usually used when the problem under consideration is such 
that locations of firms is a priori heterogeneous, however, market boundaries do lead in 
certain situations to existence problems that do not appear in the circular model for the 
same type of assumptions1. On the other hand, the circular model is preferred when 
firms’ locations can be considered homogeneous. It is used to study some market 
configurations such as locations of stores a long a city belt way, airlines choosing 
departure times on the dial of a clock, etc. However, in these types of circular market 
configurations, there are situations in which the market is discontinuous.  

Many environmental policies involve the introduction of restrictions on market 
configuration by the regulating authorities. For example, in most urban designs, we 
observe the existence of portions of land located around the city belt-ways devoted to 
non-residential purposes. We can find environmentally protected areas, parks, 
recreational facilities, etc. When considering urban design, regulators have to decide 
whether they should leave some part of urban land for this type of recreational 
activities, and if they do so, what is the optimal size of these non-residential areas. 
Similarly, in order to control for noise pollution, many airports located near cities have 
introduced limits on take offs and landings during certain hours of the night, therefore, 
imposing time restrictions on the services offered by airlines.These physical or time 
zones represent a discontinuity in the market since neither consumers nor firms can be 
located within them; however, it is possible to find consumers and firms adjacent to 
both ends of these restricted areas.  

In order to study the implications of this type of market configurations, we 
assume a circular spatial model, where there is a segment where people live and firms 
locate, that we shall refer to as the market, and another segment where no market 
activity takes place. In this context, a three-stage game can be considered in which in 
the first stage the regulator chooses the size of the market, in the second stage firms 
choose locations and in the third stage firms compete in prices. We will suppose that the 
regulator chooses the length of the market in a non-strategic manner2; therefore, the 
model we present, once market size is given, can be reduced to a two-stage game in 
which firms first choose location, and then compete in prices. 

This model can be thought of as a synthesis of the circular and linear spatial 
models. If the size of the market is half of the circumference, l/2, the model is 
equivalent to Hotelling’s (1929) linear city, while if the size of the market is the whole 
circle, l, we are in Salop’s (1979) configuration. We analyze the existence of a price 
equilibrium when the market segment, h, is restricted to be less than l. (See figure 1) 

We will make the standard assumptions of two firms selling a homogeneous 
product, consumers evenly distributed a long the market segment, and we will study the 
existence problem in our model, using a concave function that ensures the existence of a 
perfect equilibrium in pure strategies in the circular model (see De Frutos et al, 1999).  

We find that there exists a subgame perfect price equilibrium for any location of 
firms provided the length of the market is greater than approximately4

3 . Furthermore, 
this equilibrium is unique and implies firms locating opposite to each other. If h is 

                                                
1 For example, when 3 firms are considered, or when the transportation costs considered is concave. 
2 In the sense that the regulator does not optimize an objective function to choose market size. 
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smaller than4
3 , we find that, for certain values of h and firms locations, there is a strip 

where no price equilibrium may exist. Nevertheless, there are many combinations of 
market sizes and firm locations for which equilibrium can be obtained. When we 
compare the intensity of competition, given the size of the market, we find that 
competition is more intense for low values of h, and the equilibrium region is smaller. 

We also study the model under convex transportation costs and we find that 
perfect equilibrium can only be obtained for values of h for which our model is 
equivalent to Hotelling’s linear city. 

The paper is organized as follows, in section 2 we present the model, in section 3 
we study the existence of equilibrium, section 4 contains the conclusions, and finally 
major proofs and graphs can be found in the appendix. 

2.- The Model 

We consider a circular city of length l where the regulator chooses the size of the 
market, h, so that firms and consumers can only be located on a certain segment of the 
circle .lh ≤  There are two firms selling a homogeneous product, with zero production 
costs, located at x and y, with hyx ≤≤≤0 . 

Consumers are evenly distributed along h, and each consumer buys a single unit 
of this product per unit of time, irrespective of its price. Since the product is 
homogeneous, consumers will buy from the firm who offers the least delivered price, 
that is, the mill price plus transportation costs.  Let p1, p2, denote the mill prices charged 
by firms located at x and y, respectively. The distance between consumer z and firm i is 
given by izd i −= , yxi ,= . We will consider a concave transportation costs function 

from the linear quadratic family: C(di) = k(di-di
2) that have been shown to ensure 

existence of a perfect equilibrium in pure strategies in the circular model. Although 
firms and consumers can only be located within h, consumers can travel along the 
whole circle and they will always take the direction that implies the shorter distance to 
the chosen firm.  

The model described above, given that the regulator behaves in a non-strategic 
manner, does give rise to a two-stage game in which firms first decide simultaneously 
their location and then simultaneously choose prices. It turns out that the solution to this 
game depends critically on the length of the market segment, h. In order to determine 
the market boundaries and derive the demands faced by each firm, we will have to find 
the indifferent consumers. A consumer is indifferent to buying from one firm or the 
other if and only if: )()( 2211 dCpdCp +=+ . 

To analyze the problem, we will assume, without loss of generality that in the 
expression of the transportation costs functions  k = 1, and the total length of the circle, 
l, is equal to1. When the market length considered is the whole circle (See figure 1), 
three types of possible indifferent consumers are found, each one belonging to a 
different segment of the circumference given by: ∈1m [x, y], ∈2m [y, 1], and ∈3m [0, 

x].  
Taking into account that the market is equal to h (h < 1), and depending on the 

price interval considered, we obtain the following demand function for firm1:
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Where: 
[ ])1(,1 zzI −−∞−= , [ ])12(),1(2 −−−−= qhzzzI , [ ])1(),12(3 qzqhzI −−−= , 

[ ])1(),1(4 zzqzI −−= , [ ]+∞−= ),1(5 zzI

Where 2112 xxqandxxz +=−=
Demand for firm 2 can be obtained as .12 DhD −=

3.- Equilibrium 

Given the size of the market, h, and using the usual approach for a two-stage 
non-cooperative game in which firms select a position at the first stage and 
subsequently set their prices, we study the subgame perfect equilibrium. We recall that a 
perfect price-location equilibrium is defined as a pair( )NN xp ,1 , ( )NN yp ,2  such that:  

( )hyxppi NNNN ,,)( 11 =   and ( )hyxpp NNNN ,,22 = , 
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Where ),( 21
NN pp is a Nash equilibrium in the price subgame when the locations choice 

is fixed. 
The profit function for firm i is given by Bi = pi Di,  i =1,2. It can be easily observed that 
this profit function is not concave in prices (see the expression for the demand function 
above) and it may exhibit different configurations. In particular, it could exhibit several 
local maxima. Therefore, the sufficient condition for a price equilibrium for any 
possible location of firms is not satisfied, although depending on the values of z, q and 
h, we could find combinations of market sizes and firms locations for which equilibrium 
may be obtained.  In order to explore this possibility we will reduce the number of 
parameters to two by assuming that: x = 0 and 2/10 ≤≤ y .  In this case, we only have 

two indifferent consumers ∈1m [x, y], ∈2m [y, 1] while ∈3m [0, x], disappears since x = 

0. Consequently, the new demand function for firm 1 can be written as: 
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[ ])1(,1

1 yyI −−∞−= , [ ])12(),1(1
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We will now compute the equilibrium of the price subgame.  
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The expression for the profit functions for firm 1 is given by: 

( )

( )














∈−

∈−+
−
−

∈−−+
−

−
∈−

=

1
421

1
321

21
1

1
221

12
1

1
1211

1

0
2)1(2

2

)12(

)1(2

Ippfor

Ippfor
y

y

pp
p

Ippfor
h

yy

pp
p

Ippforhp

B

The profit function is not concave in prices and it could exhibit different 
configurations. In particular, it may exhibit one or two local maxima. Depending on the 
values of y two cases may arise, one in which the global optimum belongs to region1

2I , 

and another in which the global optimum belongs to1
3I . 

3.1.- Equilibrium in Region 1
2I

For this prices interval two indifferent consumers exist.Computing the first order 
conditions for the profit functions in12I , we obtain: 
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Proof: See Appendix 

Proposition 2:  There exists a subgame perfect price-location equilibrium if and only if 
733,0≥h and then, this equilibrium is unique and is given by: 

2
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Proof: See Apendix. 

3.2.- Equilibrium in Region 1
3I

For this prices interval only one indifferent consumer exists.Computing the first order 
conditions for the profit functions in13I , we obtain: 
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)4)(1(
3

12
2 yhyp N −−=  and      =),( 2

2
2

12
NN ppB 2)4)(1(

18

1
yhy −−   

Proposition 3: The pair ),,0(),,,0(( 2
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Proof: See Appendix. 

Corollary: if 733,0<h , there is no price equilibrium in region R defined by: 

{ })()(/),( 2112 yhhyhyhR <<=

Proof: R is the intersection of the two complements of regions 1R and 2R . Figure 6 
combines the two equilibrium regions depicted in the previous two figures. As can be 
seen from the graph, there is only a narrow strip where no equilibrium exists.□

In figure 4, the equilibrium area for region 1
2I is depicted, all points in the shaded 

area are possible equilibria. Note that for 733,0≥h there exists a price equilibrium for 
every possible location of firm 2. When we look at the optimal location of firm 2 in 
region 1

2I , when there are two indifferent consumers, we find that firm 2 benefits from 
moving away from firm 1 and locating at the opposite boundary of the market segment 
where m1 exists. The result is equivalent to what we obtain when we consider the 
complete circular model: there are two indifferent consumers and firms locate opposite 
to each other and equidistant to the two indifferent consumers. However, in our model 
the competitive situation of the two firms is not the same, since we have had to fix the 
location of firm 1 in order to reduce the number of parameters. Firm 1 is located at the 
edge of the non-residential area, and therefore this side of its potential market is 
restricted, as a result, firm 2 may charge a larger price and obtain larger profits than firm 
1. 

Figure 5 shows the equilibrium area for region1
3I . All points belonging to the 

shaded area (above the line h = y), are equilibrium candidates. 
When we look at the optimal location of firm 2 in this region, we find 

that 0)4(
9

12 >−=
∂

∂
yh

y

B
and therefore, firm 2 will tend to move away from firm 1. In 

region 1
3I  there is only one indifferent consumer and the market resembles the linear city 

case, given that firm 1 is fixed at 0, firm 2 will choose to locate at the other market 
extreme. 

If we look at the prices differences of the two equilibrium regions we obtain: 

0
3
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ppD NNN , 0

3

))(1(22
2

2
1

2 <−−−=−= yhyy
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We can see that, in both cases, the price of firm 1 is smaller than that of firm 2, this can 
be explained, as mentioned above, in terms of market configuration since firm 2 has 
more potential customers than firm 1.  

Also, when we compare the prices differences in both regions, DN1 and DN2, we 

find that: 0
3

)2)1()(1(221 >+−−−=− yyhyy
DD NN  for all ),( yh , so 21 NN DD > . This 

implies that the intensity of competition is stronger in the second case than in the first 
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one. This is not surprising since market size is smaller in the second case than in the 
first and this must induce stronger competition. This can explain why the equilibrium 
region of the second case is smaller than the first one. 

Convex Transportation Costs 

We have also studied the convex transportation costs function: C(d) = kd2. This 
function was shown to be strategically equivalent to C(di) = k(di-di

2) when the whole 
circle is being considered (see De Frutos et al, 1999, 2001). However, when the market 
is restricted to be a semicircle this result breaks down. We find that the structure of the 
demand function varies substantially from the concave to the convex case, as we will 
expose now: 

Let C(di) = kdi
2 and that l = k = 1, x < y. In this case, and for the whole circular 

market three types of indifferent consumers may be obtained: [ ]2
1

1 ,0 +∈ xn , 

[ ]2
1

2
1

2 , ++∈ yxn  and [ ]1,2
1

3 +∈ yn . However, when we restrict the length of the 

market to h, we obtain the following cases: 
Case 1: [ ]2

1, +∈ xyh . Then the indifferent consumers n2, n3 do not belong to the 

market, therefore there is only one indifferent consumer, n1. In this case we have a 
perfect equilibrium. This result is equivalent to Hotelling’s linear model with quadratic 
transportation costs, as studied by D’ Aspremont et al. (1979); where firms choose 
maximum differentiation.  
Case 2: [ ]2

1
2
1 , ++∈ yxh . Then there exist two possible indifferent consumers n1 and n2

and the demand function is piecewise linear with four different domains ([1] the whole 
market is for firm1,[2] market boundaries are determined by the indifferent consumers  
n1 and n2, [3] market boundaries are determined by only one indifferent consumer,  n1 or 
n2. [4] the whole market is for firm 2). In this case, there is no price equilibrium for 
every possible firms’ locations and every value of h. 
Case 3: [ ]1,2

1+∈ yh . Then either two indifferent consumers will exist simultaneously n1

and n2 or n2 and n3, or just n2 and the demand function is piecewise linear with five 
different domains ([1] the whole market is for firm1,[2] market boundaries are 
determined by the indifferent consumers  n1 and n2, [3] market boundaries are 
determined by only one indifferent consumer,  n2. [4] market boundaries are determined 
by the indifferent consumers  n2 and n3, [5]the whole market is for firm 2). As in case 2, 
there is no perfect equilibrium.  

4.- Conclusions 

In this article we propose a circular model of spatial competition in which the 
market is restricted in order to allow for a non-residential area. Aside from this 
discontinuity in the market, we make standard assumptions and use the two linear 
quadratic functions (concave and convex cases) that have been proven to ensure the 
existence of price equilibrium in the circular model. 

We find that, unlike when the whole circle is considered, this two transportation 
costs functions are not strategically equivalent. When concave transportation costs are 
assumed, we obtain that provided the regulator chooses the size of the market segment 
to be greater than approximately4

3  ),733,0( ≥h there is a subgame perfect price-
location equilibrium and this equilibrium is unique. On the other hand, if market size is 
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chosen to be less than43 , for certain values of h and firms locations, there is a narrow 
strip where no price equilibrium may exist. As usual, equilibrium failure is due to the 
non-concavities exhibited by profit functions. 

When convex transportation costs are assumed, perfect equilibrium can only be 
obtained for [ ]2

1, +∈ xyh . This case is equivalent to Hotellings’ linear model.
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5.-Appendix

Proof of Proposition 1: 

In order for ),( 1
2

1
1

NN pp to be a price equilibrium, the following conditions must be met: 

(i) 1
2

1
2

1
1 Ipp NN ∈−

(ii) 1
1

211
1

2
1

11 ),(),( pppBppB NNN ∀≥

(iii) 22
1

12
1

2
1

12 ),(),( pppBppB NNN ∀≥

Condition (i) Implies that: 

a) 1
2

1
1)1( NN ppyy −≤−−   Which is always true, and  

b) )12(1
2

1
1 yhypp NN −−≤−    

Which holds if and only if:  11hh ≥ , where  11h  = ( )y

y

+
+
22

)51(

So ),( 1
2

1
1

NN pp could be a Nash price equilibrium if y and h belong to the set: 

{ }1111 ),( hhyhR ≥=

In order to verify condition (ii) we have to check, for 1
2
Np given, what is the maximum 

∗∗
1p  for ),( 1

2
**

11
NppB in 1

3I  which is reached at:  

a) )12(1
2

**
1 −−+= yhypp N , in this case we have  ( )1

2
1

11 , NN ppB   > ( )1
211 , NppB ∗∗

b) )12)(1(
3

1**
1 +−= hyyp , Where **

1p > )12(1
2 −−+ yhyp N , and the profit function for 

firm 1 is given by: =),( 1
2

**
11

NppB [ ]2)2()1(
18

1
hyy +− , some simple calculation then show 

that ( ) ( )1
211

1
2

1
11 ,, NNN ppBppB ∗∗≥  for all ),( yh such that 12hh ≥ , where  12h =

y

y

−
+

4

21
. 

In order to verify condition (iii) we have to carry out the same analysis for firm 2: 

Given ,1
1
Np  the profit function of firm 2, ( )2

1
12 , ppB N  has only one maximum for 

[ )+∞∈ ,2 op , that is reached at ∗∗
2p = 1

2
Np , thus we have  ( ) ( ) 22

1
12

1
2

1
12 ,, pppBppB NNN ∀≥  . 

  

Therefore, combining conditions i, ii, iii, we obtain that ),( 1
2

1
1

NN pp is a Nash price 

equilibrium for 11hh ≥  and 12hh ≥ . 
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However, we also verify that 12h > 11h > y , (See figure 3), therefore ),( 1
2

1
1

NN pp is a Nash 

price equilibrium in the region1R defined as: 

{ }121 ),( hhyhR ≥=    (See figure 4) 

Proof of Proposition 2: 

From proposition 1, there exists a price equilibrium if )(12 yhh ≥ , however, simple 

calculations show that )(12 yh is increasing ( 0
)4(2

9
2

12 >
−

=
∂

∂
yyy

h
) and reaches a 

maximum for
2

1=y  (see figure 4) and 733,0
124

22
)

2

1
(12 ≈

−
+=h , therefore 733,0≥∀h

there exist a price equilibrium for any firms location.

If we look at the optimal location of firm 2 (given that the location of firm 1 is 

fixed at 0) we find that 
2

1
02 ==⇒=

∂
∂ Nyy

y

B
. Substituting y by 

2

1
 in the 

expressions of  

),,0(1
1 hyp N and ),,0(1

2 hyp N we obtain 
12

14
),,0(1

−= h
hyp NN ,  .

12

12
),,0(2

+= h
hyp NN

□

Proof of Proposition 3: 

In order for ),( 2
2

2
1

NN pp to be a price equilibrium, the following conditions must be met: 

(i’) 1
3

2
2

2
1 Ipp NN ∈−

(ii’) 1
2

211
2

2
2

11 ),(),( pppBppB NNN ∀≥

(iii’) 22
2

12
2

2
2

12 ),(),( pppBppB NNN ∀≥

Condition (i’) implies that 

a) 2
2

2
1)12( NN ppyhy −≤−−  Which holds if and only if, 21hh ≤  where 21h =

)12(2

)5(

+
+
y

yy

b) )1(2
2

2
1 yypp NN −≤−  Which is always true.  

So ),( 2
2

2
1

NN pp could be a Nash price equilibrium if y and h belong to the set: 

{ }2121 ),( hhyhR ≤=

In order to verify condition (ii’),  

Given 2
2
Np , and considering21R , we verify that ),( 2

211
NppB admits a global maximum 

in 2
11
Npp = . 
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condition (iii’),  

Similarly, given 2
1
Np , and considering21R , we verify that ),( 2

2
12 ppB N admits a global 

maximum in 2
22
Npp = . 

Finally, ),( 2
2

2
1

NN pp is a Nash price equilibrium in region2R  defined as: 

{ }212 ),( hhyyhR ≤≤= (See figure 5) 
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Figure 1 
Figure 2 

Figure 3 Figure 4 
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Figure 5 Figure 6 
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