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Abstract

Inspired by Maschler and Owen (1989), we provide a dynamic approache to the multi-choice
Shapley value proposed by Hsiao and Raghavan (1992,1993) under plurality-efficiency.
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1 Introduction

A multi-choice TU game, introduced by Hsiao and Raghavan (1992,1993),
is a generalization of a TU game in which each player has several activity
levels. There are several branches of solutions for these games that are
extensions of the Shapley value in literature. In this paper, we apply the
multi-choice Shapley value proposed by Hsiao and Raghavan (1992,1993),
which we name the H&R Shapley value.

Maschler and Owen (1989) characterized a consistent Shapley value
for hyperplane games. Subsequently, they also provided a dynamic ap-
proach that lead the players to the consistent solution, starting from an
arbitrary Pareto optimal payoff vector.

Based on the result of Maschler and Owen (1989), we offer an analogue
result for the H&R Shapley value. Specifically, for the H&R Shapley
value, we define an x-dependent reduced games. Furthermore, we show
how the H&R Shapley value can be reached dynamically from an payoff
vector which is plurality-efficient in some games. The dynamic process
should make some use of the consistency.

2 Definitions and Notation

Let U be the universe of players and N ⊆ U be a set of players. Let
m = (mi)i∈N be the vector that describes the number of activity levels
for each player, in which he can actively participate. For i ∈ U , we set
Mi = {0, 1, · · · ,mi} as the action space of player i, where the action 0
means not participating, and M+

i = Mi \ {0}. For N ⊆ U , N 6= ∅, let
MN =

∏
i∈N Mi be the product set of the action spaces for players in N .

Denote the zero vector in RN by 0N .
A multi-choice TU game is a triple (N,m, v), where N is a non-

empty and finite set of players, m is the vector that describes the number
of activity levels for each player, and v : MN → R is a characteristic func-
tion which assigns to each action vector x = (xi)i∈N ∈ MN the worth
that the players can obtain when each player i plays at activity level
xi ∈ Mi with v(0N) = 0. If no confusion can arise a game (N,m, v) will
sometimes be denoted by its characteristic function v. Given (N,m, v)
and x ∈ MN , we write (N, x, v) for the multi-choice TU subgame ob-
tained by restricting v to {y ∈ MN | yi ≤ xi ∀i ∈ N} only. Denote the
class of all multi-choice TU games by MC.

Given (N,m, v) ∈ MC, let LN,m = {(i, j) | i ∈ N, j ∈ M+
i }. A

solution on MC is a map ψ assigning to each (N,m, v) ∈ MC an
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element
ψ(N,m, v) =

(
ψi,j(N,m, v)

)
(i,j)∈LN,m ∈ RLN,m

.

Here ψi,j(N,m, v) is the power index or the value of the player i when he
takes action j to play game v. For convenience, given (N,m, v) ∈ MC
and a solution ψ on MC, we define ψi,0(N,m, v) = 0 for each i ∈ N .

Given S ⊆ N , let |S| be the number of elements in S, and let eS(N)
be the binary vector in RN whose component eSi (N) satisfies

eSi (N) =

{
1 if i ∈ S ,
0 otherwise .

Note that if no confusion can arise eS(N) will be denoted by eS. Given
(N,m, v) ∈MC and x ∈MN , we define S(x) = {k ∈ N | xk 6= 0}.

Let x, y ∈ RN , we say y ≤ x if yi ≤ xi for all i ∈ N . The analogue
of unanimity games for multi-choice games are minimal effort games
(N,m, uxN), where x ∈MN , x 6= 0N , defined by for all y ∈MN ,

uxN(y) =

{
1 if y ≥ x ;
0 otherwise

Hsiao and Raghavan (1992,1993) showed that for (N,m, v) ∈ MC it
holds that v =

∑
x∈MN

x 6=0N

ax(v) uxN , where ax(v) =
∑

S⊆S(x)(−1)|S| v(x− eS).

Definition 1 Hsiao and Raghavan (1992,1993) proposed a multi-choice
Shapley value, the H&R Shapley value. We denote the symmetric
form of the H&R Shapley value by γ. Formally, the H&R Shapley value
γ is the solution on MC which associates with each (N,m, v) ∈ MC,
each i ∈ N and each j ∈M+

i the value ∗

γi,j(N,m, v) =
∑

x∈MN

xi≤j

ax(v)

|S(x)|
.

3 The Axioms

For x ∈ RN , we write xS to be the restriction of x at S for each S ⊆ N .
Let N ⊆ U , i ∈ N and x ∈ RN , we introduce the substitution notation
x−i to stand for xN\{i} and let y = (x−i, j) ∈ RN be defined by y−i = x−i

∗We define the H&R Shapley value in terms of the dividends. Hsiao and Raghavan
(1993) provided an alternative formula of the H&R Shapley value.
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and yi = j. In this paper, we will make use of the following axioms: Let
ψ be a solution on MC.

• Efficiency (EFF): For all (N,m, v) ∈MC,
∑
i∈N

ψi,mi
(N,m, v) = v(m).

The following axioms are analogues of the balanced contributions
property due to Myerson (1980).

• Strong balanced contributions (SBC): For each (N,m, v) ∈ MC
and for all (i, ki), (j, kj) ∈ LN,m, i 6= j,

ψi,ki

(
N, (m−j, kj), v

)
− ψi,ki

(
N, (m−j, 0), v

)
= ψj,kj

(
N, (m−i, ki), v

)
− ψj,kj

(
N, (m−i, 0), v

)
,

Upper Balanced Contributions (UBC) only requires that SBC holds
if ki = mi and kj = mj.

• Independence of individual expansions (IIE)†: For each (N,m, v) ∈
MC and for each (i, j) ∈ LN,m, j 6= mi,

ψi,j
(
N, (m−i, j), v

)
= ψi,j

(
N, (m−i, j + 1), v

)
= · · · = ψi,j(N,m, v).

Weak independence of individual expansions (WIIE) only re-
quires that IIE holds if |S(m)| = 1.

Theorem 1 (Hwang and Liao (2006))

1. A solution ψ on MC satisfies EFF, IIE, and UBC if and only if
ψ = γ.

2. A solution ψ on MC satisfies EFF, WIIE, and SBC if and only if
ψ = γ.

Interpretation : Given (N,m, v) ∈ MC. In the usual TU setting the
basic assumption is that the grand coalition N forms, and consequently
that v(N) is the amount that has to be divided. Therefore a payoff vector
is a vector (xi)i∈N where xi is the amount paid to player i, and efficiency
dictates that

∑
i∈N xi = v(N), all the gains (or maybe losses) are to be

divided among the participants. In the framework of multi-choice games,
the basic assumption is still that the grand coalition N forms, and con-
sequently there are many cooperative situations of N . This means that

†This axiom was introduced by Hwang and Liao (2006).
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for each z ∈ MN with zi 6= 0 for all i ∈ N , it is possible that v(z) is the
amount that has to be divided. Therefore a payoff vector is a “configura-
tion” (xi,j)(i,j)∈LN where xi,j is the amount paid to player i corresponding
to his activity level j when player i participates at his activity level j.
In order to reach the maximal benefit of “individuality”, each individ-
uality hopes that all other players are supposed to participate at their
maximum level of effort when he participates at his activity level j in a
game. Hence we will only concern that “all other players are supposed
to participate at their maximum level of effort”. A particular situation
is that “all players participate at their maximum level of effort”, which
is also most interesting situation. The definition of the corresponding
concept of efficiency are as the definition as follows.

Definition 2 Given (N,m, v) ∈MC and x ∈ RLN,m
. x satisfies Plurality-

efficiency (PEFF) in (N,m, v) if for all (i, j) ∈ LN,m,

xi,j +
∑

k∈N\{i}

xk,mk
= v(m−i, j).

Furthermore, a solution ψ on MC satisfies PEFF in (N,m, v) if

ψi,j(N,m, v) +
∑

k∈N\{i}

ψk,mk
(N,m, v) = v(m−i, j).

Note that if there exists (N,m, v) such that a solution satisfies PEFF in
(N,m, v), then it satisfies EFF in (N,m, v).

For S ⊆ N , we denote Sc = N \ S and 0S the zero vector in RS.
Given a solution ψ, (N,m, v) ∈ MC, and ∅ 6= S ⊆ N , the reduced
game (S,mS, v

ψ
S,m) with respect to ψ, S and m is defined by for all

x ∈MS,

vψS,m(x) = v(x,mSc)−
∑
i∈Sc

ψi,mi

(
N, (x,mSc), v

)
• Consistency (CON): For all (N,m, v) ∈MC, for all ∅ 6= S ⊆ N , for
all i ∈ S and for all j ∈M+

i ,

ψi,j(S,mS, v
ψ
S,m) = ψi,j(N,m, v).

Theorem 2 (Hwang and Liao (2006)) The solutions γ satisfy CON.
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4 Dynamic Approaches

In this section, we will find a dynamic process that lead the players to so-
lutions, starting from an arbitrary payoff vector which satisfies plurality-
efficiency in a game. The dynamic process should make some use of the
consistency. In order to exhibit such process, let us define an (x, γ)-
dependent reduced game:

Definition 3 Given (N,m, v) ∈MC, S ⊆ N and x ∈ RLN,m
be a payoff

vector which satisfies PEFF in (N,m, v). The (x, γ)-reduced game
(S,mS, v

x
γ,S) is given by for all y ∈MS,

vxγ,S(y) =

{
v(m−i, j)−

∑
i∈Sc

xi,mi
y =

(
(mS)−i, j

)
for all (i, j) ∈ LS,mS ,

vγS,m(y) otherwise .

Given (N,m, v) ∈ MC with N ≥ 3, (i, j) ∈ LN,m and solution γ,
define fi,j : MN → R to be

fi,j(x) = xi,j + α
∑

k∈N\{i}

(
γi,j

(
{i, k},m{i,k}, v

x
γ,{i,k}

)
− xi,j

)
, (1)

where α is a fixed postive number, which reflects the assumption that
player i does not ask for full correction (when α = 1) but only (usually)
a fraction of it. By the PEFF of x and the definitions of (x, γ)-reduced
game and fi,j, it is clearly to see that

(
fi,j

)
(i,j)∈LN,m also satisfies PEFF

in (N,m, v). Define f = (fi,j)(i,j)∈LN,m and x0 = x, x1 = f(x0), x2 =
f(x1), · · · , xq = f(xq−1) for all q ∈ N.

Theorem 3 Given (N,m, v) ∈MC such that γ satisfies PEFF in (N,m, v).
If 0 < α < 4

|N | , then for each vector x ∈ RLN,m
which satisfies PEFF in

(N,m, v), {xq}∞q=1 converges geometrically to
(
γi,j(N,m, v)

)
(i,j)∈LN,m.

Proof. Given (N,m, v) ∈MC such that γ satisfies PEFF in (N,m, v).
And given i, k ∈ S(m) and a vector x ∈ RLN,m

which satisfies PEFF in
(N,m, v). Let S = {i, k}, by PEFF, UBC and IIE of γ, and definitions
of vγS,m and vxγ,S, we have that for all j ∈M+

i ,

γi,j(S,mS, v
x
γ,S) + γk,mk

(S,mS, v
x
γ,S) = xi,j + xk,mk

.

and

γi,j(S,mS, v
x
γ,S)− γk,mk

(S,mS, v
x
γ,S)

= γi,j(S, ((mS)−i, j), v
x
γ,S)− γk,mk

(S,mS, v
x
γ,S) (by IIE of γ)

= γi,j(S, (((mS)−i, j)−k, 0), vxγ,S)− γk,mk
(S, ((mS)−i, 0), vxγ,S) (by UBC of γ)

= γi,j(S, (((mS)−i, j)−k, 0), vγS,m)− γk,mk
(S, ((mS)−i, 0), vγS,m) (by definition of vxγ,S)

= γi,j(S, ((mS)−i, j), v
γ
S,m)− γk,mk

(S,mS, v
γ
S,m) (by UBC of γ)

= γi,j(S,mS, v
γ
S,m)− γk,mk

(S,mS, v
γ
S,m) (by IIE of γ).
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Therefore,

2 ·
[
γi,j(S,mS, v

x
γ,S)− xi,j

]
= γi,j(S,mS, v

γ
S,m)− γk,mk

(S,mS, v
γ
S,m)− xi,j + xk,mk

.
(2)

By (1), (2) and CON of γ,

fi,j(x) = xi,j + α
2
·
[ ∑
k∈N\{i}

γi,j(S,mS, v
γ
S,m)−

∑
k∈N\{i}

xi,j

−
∑

k∈N\{i}
γk,mk

(S,mS, v
γ
S,m) +

∑
k∈N\{i}

xk,mk

]
= xi,j + α

2
·
[(
|N | − 1

)
γi,j(S,mS, v

γ
S,m)−

(
|N | − 1

)
xi,j

−
(
v(m)− γi,j(S,mS, v

γ
S,m)

)
+

(
v(m)− xi,j

)]
= xi,j + |N |·α

2
·
[
γi,j(N,m, v)− xi,j

]
.

Hence, for all q ∈ N,(
1− |N |·α

2

)[
γi,j(N,m, v)− xqi,j

]
=

[
γi,j(N,m, v)− fi,j(x

q)
]

=
[
γi,j(N,m, v)− xq+1

]
.

If 0 < α < 4
|N | , then −1 <

(
1 − |N |·α

2

)
< 1 and {xq}∞q=1 converges

geometrically to
(
γi,j(N,m, v)

)
(i,j)∈LN,m .

Corollary 1 If 0 < α < 4
|N | , then for each (N,m, v) ∈ MC and for

each efficient vector x ∈ RLN,m
, {(xq)i,mi

}∞q=1 converges geometrically to
γi,mi

(N,m, v) for all i ∈ S(m).

Proof. The proof of Corollary 1 is similar to Theorem 3, we omit it.
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