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Abstract
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1. Introduction

Survival analysis is widespread in applied econometrics such as labor eco-
nomics, industrial organizations, health economics, and population eco-
nomics. Many survival models, including the most popular Cox’s propor-
tional hazard model, do not explicitly assume unobserved heterogeneity. It
is empirically difficult to separate the effect of duration dependence from
those of unobserved heterogeneity. However, in social science, the existence
of omitted variables is inevitable, and it is always inadequate to control popu-
lation heterogeneity. Therefore, the model without unobserved heterogeneity
overestimates (or underestimates) the degree of negative (positive) duration
dependence in the hazard, even if this model has consistency of coefficients.

One way to introduce unobserved heterogeneity into survival models is
to assume that the heterogeneity is multiplicative to the hazard function
and follows a gamma distribution. This method is simple and has a closed
form solution. However, this is a parametric method, and the distribution
assumption of heterogeneity is rather important. Furthermore, we do not
determine the econometric interpretation of this method if the probability
density function is not an exponential or Weibull distribution.

In this paper, we propose new semi-nonparametric survival models that
generalize unobserved heterogeneity, as well as a dependent variable of the
lognormal survival model. First, we generalize the log-transformed dependent
variable using the Box-Cox transformation, which contains various function
forms. Second, we generalize the normally distributed unobserved hetero-
geneity using Hermite polynomials, which include a normal distribution as
a special case. In the empirical application, this paper compares the per-
formance of the proposed models, using the General Social Survey (GSS) in
2002 following Winkelmann and Boes (2006).

This paper is organized as follows. Section 2 proposes the semi-
nonparametric regression-based survival model. Section 3 depicts the appli-
cation of the fertility data, and Section 4 presents our concluding remarks.

2. The model

We consider the standard survival analysis. Suppose that a random variable,
Ti, i = 1, . . . , N , has a continuous probability distribution f (ti), where ti
is a realization of Ti. The cumulative distribution function of this variable
takes the following form: F (ti) =

∫ ti
0

f (si) dsi. We define a censoring in-
dicator ci = 1 if the observation is censored, and ci = 0 if the observation
is uncensored. Further, the log-likelihood function is obtained as follows:
ln L =

∑N
i=1 (1− ci) ln f (ti) + ci ln [1− F (ti)] .
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In the lognormal survival model, a logarithmic survival variable consists of
a linear index of independent variables and an additive normally distributed
error term: ln ti = x′

iβ + εi, where xi is a K×1 covariate vector of covariates
and β ∼ K×1 is a parameter to be estimated. Although the lognormal model
clearly assumes heterogeneity, it has some disadvantages. First, the transfor-
mation of the dependent variable ti is quite arbitrary. The log transformation
may not always be the best choice. Second, this model is parametric; we as-
sume the normally distributed unobserved heterogeneity and estimate the
parameters using the maximum likelihood (ML) method. However, the in-
correct specification of the error term causes the inconsistency of the ML.
Therefore, we require a more flexible method to estimate survival data.

First, we generalize the log-transformed dependent variable using the
Box-Cox transformation, such as

(
tλi − 1

)
/λ = x′

iβ + εi, where λ is a pa-
rameter of the Box-Cox transformation. In this model, when λ → 0, the
left-hand side (LHS) is ln (ti), and when λ = 1, the LHS is ti − 1. The Box-
Cox transformation contains the log-linear and linear models as a special
case.

Second, we generalize the error term. If the relation between the error
term and the survival random variable is quasi-linear, like the lognormal
model, we obtain the following conditions using the Jacobian of the trans-
formation dti/dεi: f (εi) = f (ti) dti/dεi and F (εi) = F (ti). Therefore, we
concentrate the distribution of εi. Following Gallant and Nychka (1987),
who proposed the semi-nonparametric series based on a normal distribution,
we approximate the unknown error term using Hermite polynomials.1 The
approximated density is obtained as follows:

f (εi) =
1

P

(
K∑

k=0

αkε
k
i

)2

1√
2πσ

exp

(
−1

2

(εi

σ

)2
)
≡ f ∗ (εi)

P
, (1)

where σ is a standard deviation parameter, αk is a parameter of a Hermite
series to be estimated, and P =

∫∞
−∞ f ∗ (εi) dεi ensures integration to 1 by

scaling density. Moreover, we impose α0 = 1 to ensure the identification
of the parameters. This Hermite series density contains not only a normal
distribution as a special case but also fat-tailed and twin peak distributions.

We discuss two generalizations for survival data and term the above
model as the Box-Cox transformed semi-nonparametric (BC-SN) model.
This model generalizes not only the error terms using Hermite polynomials
but also the dependent variable using the transformation of ti, and includes

1See Gabler et al. (1993), van der Klaauw and Koning (2003), and Stewart (2004) for
further details.
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the lognormal model as a special case. In estimating survival data, the cal-
culation of F (εi) =

∫ εi

−∞ f (νi) dνi is required. Fortunately, this integral has

a closed-form solution and is easy to evaluate.2

The log-likelihood function is usually maximized by gradient-based meth-
ods such as Newton, BFGS, or BHHH algorithms. However, these algorithms
are sensitive to initial values and contain the problem of local maxima. It
is difficult to estimate parameters αk of the semi-nonparametric model cor-
rectly, and it is practically impossible to attempt several initial conditions.
To avoid the problem of local maxima, we use the stochastic evolution al-
gorithm (StocE), which attains the global maxima with a high probability
(Saab and Rao, 1990; Sait and Youssef, 2000).

Let the parameter vector of this density be θ = [β ′, σ, λ, α1, α2, . . . ]
′. Fur-

ther, the StocE algorithm obtains the parameters as follows:

1) Set the initial parameters p0, θ0, R, pup, r and t ← 0. Calculate the
log-likelihood ln L0 under θ0.

2) Set θbest = θ0 and ln Lbest = lnL0.

3) Generate θ̂ in the neighborhood of θ; e.g., calculate θ̂ = θt + a · u1 and

ln L̂
(
θ̂
)
, where a is a positive constant number and u1 is a uniform

random vector on [−1, 1].

4) If ln L̂ − ln Lt > −pt · u2, where u2 is a uniform random number, then
θt+1 = θ̂; otherwise, θt+1 = θt. Calculate ln L (θt+1).

5) If ln L (θt+1) = ln L (θt), then set pt+1 = pt + pup; otherwise, pt+1 = p0.

6) If ln L (θt+1) > ln Lbest, then θbest = θt+1, ln Lbest = ln Lt+1, and r = r−R;
otherwise, r = r + 1. Set t← t + 1.

7) Repeat steps 3 to 6 until r > R.

The StocE algorithm resembles the simulated annealing (SA) method,
which is a stochastic technique using the Metropolis algorithm. If the an-
nealing process is slow, the SA algorithm is similar to a random search and
its convergence speed is slow. The StocE algorithm eliminates the inefficient
path with a probability ptu2. Therefore, in general, the StocE algorithm is
faster than the SA. However, the StocE algorithm does not ensure the con-
vergence of the global maximum, because the sequence of the StocE is not a
perfect Markov chain. Nonetheless, in practice, the StocE is effective.

2Due to space constraints, we do not provide the calculation results of F (εi). For
further details, please contact the author.
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3. An application to fertility

We present the results of the application of the proposed model. In this
example, we analyze the factors that affect the time until a woman bears
her first child, using the data obtained from the GSS in 2002, an annual or
biannual cross-section survey that began in 1972.3 Following Winkelmann
and Boes (2006), we regard the variable age at the time of the first child’s
birth as duration and employ women under the age of 40. The total number
of observations is 1, 371. There are two types of women: Type A includes
women who have had their first child (the number of uncensored sample is
1,154); Type B includes women who are childless under the age of 40 (the
number of right-censored samples is 217). Moreover, this survey considers
the number of years of formal schooling, the number of siblings, four dummy
variables, namely, those in the low-income group at age 16 (less than average
income), those who were urban residents at age 16, those who are white, and
those who are immigrants.

We investigate the result of the BC-SN model but find that the param-
eter λ is nearly zero (and not significant). Further, we estimate the semi-
nonparametric (LN-SN) model with log transformation (λ = 0). For com-
parison purposes, we include the standard lognormal survival model and the
lognormal model with gamma distributed unobserved heterogeneity (LN-G).
Table 1 shows the estimated results of the four models and also presents the
values of the log-likelihood, Akaike’s information criteria (AIC), and Bayesian
information criteria (BIC). The maximum value of the log-likelihood and the
minimum value of the AIC is the LN-SN model (the reason for the positive
log-likelihood is σ < 1). The minimum value of the BIC is the LN-G model.
Further, we use Vuong’s (1989) test to select the unique model between the
LN-SN and LN-G models. Let f (1) be the likelihood of model 1 and f (2)

be that of model 2. Under the null hypothesis that both the models are
equivalent (E

[
ln f (1) − ln f (2)

]
= 0), the test statistic

∑N
i=1

[
ln f (1) − ln f (2)

]
√∑N

i=1

[
(ln f (1) − ln f (2))

2 −
(∑N

i=1 ln f (1) − ln f (2)
)2

/N

] (2)

follows a standard normal distribution. If the statistic exceeds the critical
value c, model f (1) is better than model f (2). If the statistic is smaller than
−c, model f (2) is better than model f (1). The test statistic for the LN-SN

3The data “kids.asc” is downloadable from
http://www.uzh.ch/sts/research/publications/microdata/index.html.
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model against the LN-G model is 1.252, and its value at the significant level
is 0.105.4 Hence, there is (weak) evidence that the LN-SN model is the best
of the four.

In Table 1, we find three features of the estimated parameters. First,
the estimated parameters of the four models closely resemble each other.
Second, the significant level of the estimated parameters also resemble each
other. Third, the values of the estimated parameters of the BC-SN and LN-
SN models are midway of those of the lognormal and LN-G models. The
reason for these features is that the BC-SN, LN-SN, and LN-G models are
based on and extended to the standard lognormal model.

However, there are large differences among the four models. For example,
in the lognormal model, the value of low income at age 16 is −0.021 and is
not statistically significant; in all the remaining models, its value ranges from
−0.031 to −0.038 and is statistically significant at the 5% level. Moreover,
the value of white is 0.091 in the LN-G model and 0.088 in the LN-SN model.
The difference between these two models is small but negligible in this data.

Figure 1 shows the estimated density of εi. The solid line is the LN-SN
model,5 the dotted line is the lognormal model, and the dashed line is the
LN-G model. The density of the LN-SN model is skewed to the left and has
a fatter tail. However, the density of the LN-G model has the fattest tail
among the three models.

4. Conclusion

This paper proposes new semi-nonparametric survival models that generalize
both an explanatory variable and unobserved heterogeneity. The former is
Box-Cox transformation and the latter is a Hermite series. In an example
using the GSS data, the Box-Cox transformation does not work well. How-
ever, the LN-SN model overcomes the other models, except for the BIC, and
shows a good performance. Therefore, there is (weak) evidence that the LN-
SN model is the best of the four. Moreover, the coefficients of the models,
except for the lognormal model, resemble each other but the difference is not
negligible.

In both econometric and statistic interpretations, the results may show
a small difference between the LN-G and semi-nonparametric models. This
view is incorrect. The LN-G model does not have a clear econometric in-
terpretation because this model assumes multiplicative heterogeneity not to

4The tests for the LN-SN model, the BC-SN model, and the LN-G model against the
lognormal model are 6.327, 6.320, and 4.999, respectively. This means that the lognormal
assumption is strongly rejected.

5The densities of the LN-SN and BC-SN models are almost identical. Thus, we omit
the latter in Figure 1.
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the probability density function but to the hazard function. That is, the
LN-G model explicitly assumes multi-heterogeneity. Therefore, in applied
econometrics, the semi-nonparametric model proposed in this paper is an
important method to estimate a demand or supply function because it as-
sumes only single and additively separable heterogeneity.
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Table 1: Estimation results of age at first birth

lognormal LN-G LN-SN BC-SN
years of education 0.031 0.032 0.031 0.031

(0.002) (0.002) (0.002) (0.002)
number of siblings −0.005 −0.003 −0.004 −0.004

(0.002) (0.002) (0.002) (0.002)
white 0.083 0.091 0.088 0.088

(0.015) (0.013) (0.012) (0.012)
immigrant 0.056 0.060 0.054 0.054

(0.019) (0.018) (0.016) (0.016)
low income at age 16 −0.021 −0.038 −0.031 −0.031

(0.016) (0.015) (0.013) (0.013)
lived in city at age 16 0.008 −0.004 −0.004 −0.004

(0.013) (0.011) (0.011) (0.011)
constant 2.696 2.615 2.693 2.693

(0.038) (0.036) (0.032) (0.032)
σ 0.219 0.150 0.214 0.214

(0.005) (0.007) (0.004) (0.004)
γ−1 0.673

(0.085)
λ 0.000

(0.001)
α1 −1.555 −1.555

(0.065) (0.065)
α2 −0.171 −0.166

(0.211) (0.208)
α3 15.489 15.493

(0.379) (0.379)
α4 1.458 1.447

(0.728) (0.735)
α5 −19.030 −19.039

(1.139) (1.139)

log-likelihood −72.933 −8.699 0.534 0.440
AIC 161.865 35.398 24.932 27.119
BIC 203.652 82.407 92.835 100.245
number of regressors 8 9 13 14

Notes: Standard errors are in parentheses; LN-G, LN-SN, and BC-SN denote the lognormal model with
gamma-distributed unobserved heterogeneity, the semi-nonparametric model with the log
transformation, and the Box-Cox transformed semi-nonparametric, respectively; AIC = −2 ln L + 2K,
BIC = −2 lnL + K lnN , where L is the maximized likelihood, K is the number of parameters, and N is
the number of observations (N = 1, 371); γ is the parameter of the gamma frailty.
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Figure 1: The estimated density function of εi
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Appendix (Not for Publication)

A The Box-Cox transformed semi-nonparametric sur-
vival model

Following Gabler et al. (1993), Eq. (2) takes

f (εi) =
1

P

(
K∑

k=0

αkε
k
i

)2

1√
2πσ

exp

(
−1

2

(εi

σ

)2
)
≡ f ∗ (εi)

P
, (A1)

where εi =
(
tλi − 1

)
/λ− x′

iβ and

P =

∫ ∞

−∞

(
K∑

k=0

αkε
k
i

)2

1√
2πσ

exp

(
−1

2

(εi

σ

)2
)

dεi. (A2)

We require algebraic computations of Eq. (A2). Van der Klaauw and Koning
(2003) show the following recursion formulas:

Ik (a, b) =

∫ b

a

uk exp

(
−
(u

δ

)2
)

du. (A3)

Equation (A3) obtains

Ij (−∞,∞) =

⎧⎪⎨
⎪⎩

δ
√

π, j = 0.

0, j = 1, 3, 5, . . .
(j−1)δ2

2
Ij−2 (−∞,∞) , j = 2, 4, 6, . . .

(A4)

Substituting δ =
√

2σ into (A5) and calculating up to j = 10 yields

I0 =
√

2σ
√

π, I2 =
1

2

(√
2σ
)3√

π,

I4 =
3

4

(√
2σ
)5√

π, I6 =
15

8

(√
2σ
)7√

π,

I8 =
105

16

(√
2σ
)9√

π, I10 =
945

32

(√
2σ
)11√

π.

When K = 5, we obtain the following relation after some algebraic manipu-
lation.(

5∑
k=0

αkε
k
i

)2

=
(
α2

0

)
+ εi (2α0α1) + ε2

i

(
2α0α2 + α2

1

)
+ ε3

i (2α0α3 + 2α1α2)

+ ε4
i

(
2α0α4 + 2α1α3 + α2

2

)
+ ε5

i (2α0α5 + 2α1α4 + 2α2α3)

+ ε6
i

(
2α1α5 + 2α2α4 + α2

3

)
+ ε7

i (2α2α5 + 2α3α4)

+ ε8
i

(
2α3α5 + α2

4

)
+ ε9

i (2α4α5) + ε10
i

(
α2

5

)
. (A5)
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Substituting Eq. (A3), (A4), and (A5) into Eq. (A2) yields

P =α2
0 +

(
2α0α2 + α2

1

) 1

2

(√
2σ
)2

+
(
2α0α4 + 2α1α3 + α2

2

) 3

4

(√
2σ
)4

+
(
2α1α5 + 2α2α4 + α2

3

) 15

8

(√
2σ
)6

+
(
2α3α5 + α2

4

) 105

16

(√
2σ
)8

+
(
α2

5

) 945

32

(√
2σ
)10

. (A6)

Therefore, the probability density function of heterogeneity consists of Eq.
(A1) and Eq. (A6). To ensure a zero mean, we impose the restriction α0 = 1
and E (εi) = 0. The expectation term E (εi) takes the form as follows:

E (εi) =
1

P

∫ ∞

−∞
εif

∗ (εi) dεi

=
1

P
[2α1 (2α0I2 + 2α2I4 + 2α4I6)

+ 2α3 (2α0I4 + 2α2I6 + 2α4I8)

+2α5 (2α0I6 + 2α2I8 + 2α4I10)] . (A7)

From the Eq. (A7), we obtain the following relation:

α5 = −α1

(
α0δ

3 + 3
2
α2δ

5 + 15
4
α4δ

7
)

+ α3

(
3
2
α0δ

5 + 15
4
α2δ

7 + 105
8

α4δ
9
)(

15
4
α0δ7 + 105

8
α2δ9 + 945

16
α4δ11

) . (A8)

Next, we present the calculation of F (εi) =
∫ εi

−∞ f (νi) dνi. When K = 5,
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we obtain the following relation using Eq. (A3):

I0 (−∞, εi) =
√

2πσΦ
(εi

σ

)
,

I1 (−∞, εi) = −σ2 exp

(
−1

2

(εi

σ

)2
)

,

I2 (−∞, εi) = −σ2εi exp

(
−1

2

(εi

σ

)2
)

+ σ2I0 (−∞, εi) ,

I3 (−∞, εi) = −σ2ε2
i exp

(
−1

2

(εi

σ

)2
)

+ 2σ2I1 (−∞, εi) ,

I4 (−∞, εi) = −σ2ε3
i exp

(
−1

2

(εi

σ

)2
)

+ 3σ2I2 (−∞, εi) ,

I5 (−∞, εi) = −σ2ε4
i exp

(
−1

2

(εi

σ

)2
)

+ 4σ2I3 (−∞, εi) , (A9)

I6 (−∞, εi) = −σ2ε5
i exp

(
−1

2

(εi

σ

)2
)

+ 5σ2I4 (−∞, εi) ,

I7 (−∞, εi) = −σ2ε6
i exp

(
−1

2

(εi

σ

)2
)

+ 6σ2I5 (−∞, εi) ,

I8 (−∞, εi) = −σ2ε7
i exp

(
−1

2

(εi

σ

)2
)

+ 7σ2I6 (−∞, εi) ,

I9 (−∞, εi) = −σ2ε8
i exp

(
−1

2

(εi

σ

)2
)

+ 8σ2I7 (−∞, εi) ,

I10 (−∞, εi) = −σ2ε9
i exp

(
−1

2

(εi

σ

)2
)

+ 9σ2I8 (−∞, εi) .

Therefore,

F (εi) =

∫ εi

−∞
f (νi) dνi

=
[
α2

0I0 (−∞, εi) + 2α0α1I1 (−∞, εi)

+
(
2α0α2 + α2

1

)
I2 (−∞, εi) + (2α0α3 + 2α1α2) I3 (−∞, εi)

+
(
2α0α4 + 2α1α3 + α2

2

)
I4 (−∞, εi)

+ (2α0α5 + 2α1α4 + 2α2α3) I5 (−∞, εi)

+
(
2α1α5 + 2α2α4 + α2

3

)
I6 (−∞, εi)

+ (2α2α5 + 2α3α4) I7 (−∞, εi) +
(
2α3α5 + α2

4

)
I8 (−∞, εi)

+ 2α4α5I9 (−∞, εi) + α2
5I10 (−∞, εi)

]
× 1

P

1√
2πσ

. (A10)
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