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Abstract

This note proves analytically and shows by a Monte Carlo analysis the spuriousness that
arises by some model selection criteria when selecting the number of breaks in stationary
AR(p) process without changes for a regression with mean-shifts. This brings a theoretical
support to the Perron's (1997) simulation results which indicate that this phenomenon occurs
for an AR(1) process.
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1 Introduction

Finding a theoretical justification for the overestimation was evoked by Bai (1998) who provides a
mathematical proof for the phenomenon that when the errors of a linear regression model without
any break are integrated of order one there is a tendency to estimate a break date in the middle
of the sample. Thus, unlike Bai (1998), our paper is concerned with the case of multiple breaks
using some model selection criteria. The fact of overestimating the number of changes when the
data-generating process (DGP) is without breaks and the estimated model is with change in mean
and change in trend is well illustrated in Nunes, Newbold and Kuan (1996) for a random walk using
the Bayesian information criterion. In the same context, Perron (1997) shows by simulations that
the conclusions of Nunes, Newbold and Kuan (1996) don’t depend on the fact that the DGP is an
integrated process of order one, even a stationary AR(1) process leads to an overestimation of the
number of changes. Recently, Boutahar and Jouini (2007) provide a mathematical proof and show
by simulations that some information criteria tend to detect a spuriously high number of structural
changes when the process is trend-stationary without breaks. The important question suggested
by their findings is that of distinction between trend-stationary process and random walk when
modelling real data series.1

Our contribution in this paper consists in generalizing the study considered by Perron (1997)
to a stationary AR(p) process for the problem of selecting the number of breaks in the mean of
the time series. Indeed, we prove analytically and show by Monte Carlo simulations that some
information criteria tend to overestimate the number of shifts.

The remainder of the paper is organized as follows. The second section presents the structural
change model and the estimation method. Section 3 defines some model selection criteria. In
section 4, we derive the main theoretical results of the paper. Section 5 reports simulation evidence
to support the relevance of the theory. Concluding comments are provided in section 6. The proof
of the Theorem is given in Appendix A, and the simulation results in Appendix B.

Throughout this paper as a matter of notation, we let “[·]” denote integer part, “ p→” convergence
in probability, “a.s.→” convergence almost surely, and “m.q.→ ” convergence in quadratic mean.

2 The model and estimators

Consider the following linear regression model of structural break with m changes:

yt = z0tδj + ut, t = Tj−1 + 1, . . . , Tj , (1)

for j = 1, . . . ,m + 1, T0 = 0 and Tm+1 = T . yt is the observed dependent variable, zt ∈ Rq is the
vector of covariates, δj are the corresponding regression coefficients with δi 6= δi+1 (1 ≤ i ≤ m),
and ut is the disturbance. The break dates (T1, . . . , Tm) are explicitly treated as unknown and for

i = 1, . . . ,m, we have Ti = [λiT ] where 0 < λ1 < · · · < λm < 1. Let δ =
³
δ
0
1, δ

0
2, . . . , δ

0
m+1

´0
.

The estimation method, proposed by Bai and Perron (1998), is based on the ordinary least-
squares (OLS) principle. The method first consists in estimating the regression coefficients δj

1Note that unlike Boutahar and Jouini (2007), this study concerns the case of stationary processes.
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by minimizing the sum of squared residuals
Pm+1

i=1

PTi
t=Ti−1+1 (yt − z0tδi)

2. Once the estimate

δ̂ (T1, . . . , Tm) is obtained, we substitute it in the objective function and denote the resulting sum of
squared residuals as ST (T1, . . . , Tm). The estimated break dates

³
T̂1, . . . , T̂m

´
are then determined

by minimizing ST (T1, . . . , Tm) over all partitions (T1, . . . , Tm) such that Ti − Ti−1 ≥ h.2 Thus, the
break date estimators are global minimizers of the objective function. Finally, the estimated regres-
sion coefficients are such that δ̂ = δ̂

³
T̂1, . . . , T̂m

´
. In our Monte Carlo study, we use the efficient

algorithm developed in Bai and Perron (2003), based on the principle of dynamic programming, to
estimate the unknown parameters.

3 The information criteria

A common procedure to select the dimension of a model is to consider an information criterion. In
this context, Yao (1988) uses the Bayesian information criterion defined as

BIC (m) = ln
³
ST

³
T̂1, . . . , T̂m

´
/T
´
+ p∗ ln (T ) /T,

where p∗ = (m+ 1) q + m is the number of unknown parameters. He shows that the estimator
of the number of breaks m̂ is consistent (at least for normal sequence of random variables with
mean-shifts) for m0, the true number of breaks, provided m0 ≤M with M a known upper bound
for m. Another criterion proposed by Yao and Au (1989) is given by

Y IC (m) = ln
³
ST

³
T̂1, . . . , T̂m

´
/T
´
+mCT/T,

where {CT} is any sequence satisfying CTT
−2/n →∞ and CT/T → 0 as T →∞ for some positive

integer n. In our simulation experiments, we use the sequence CT = 0.368T 0.7 proposed by Liu,
Wu and Zidek (1997).

Note that these information criteria cannot directly take into account the presence of serial
correlation in the errors. The estimated number of break dates m̂ is determined by minimizing
the above-mentioned criteria given M a fixed upper bound for m. The usefulness of these criteria
is illustrated by Jouini and Boutahar (2005) to explore the empirical evidence of the instability
by uncovering structural breaks in some U.S. time series. To that effect, they pursue a methodol-
ogy composed of different steps and propose a modelling strategy to implement it. Their results
indicate that the time series relations have been altered by various important facts and interna-
tional economic events such as the two Oil-Price Shocks and changes in the International Monetary
System.

4 Spuriousness of the criteria

We consider an AR(p) process without breaks which is commonly expressed as

2Note that h is the minimal number of observations in each segment (h ≥ q, not depending on T ). Bai and Perron
(2003) suggest that if tests for structural breaks are required, then h must be set to [εT ] for some arbitrary small
positive number ε.
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A (B) yt = ut, 1 ≤ t ≤ T, (2)

where B is a backward shift operator such that Bnyt = yt−n for n ∈ N, and A (B) = 1−
Pp

j=1 ajB
j

denotes the autoregressive polynomial of finite order p. We provide, in the next Theorem, a
description of the results relating to this process under the condition that the following assumptions
are satisfied.

Assumption 1. We assume that the roots of the polynomial A (z) = 1−Pp
j=1 ajz

j are strictly
outside the unit disk, i.e. the process yt is stationary.

Assumption 2. Let zt = σ (ui : i ≤ t) be the sigma-field generated by the past history of {ut}.
We assume that {ut} is a martingale difference sequence with respect to the sigma-field zt such
that

E
¡
u2t |zt−1

¢
= σ2u, almost surely,

supE
³
|ut|2+α |zt−1

´
< ∞, almost surely,

for some α > 0.

We define the sum of squared residuals

ST

³
T̂1, . . . , T̂m

´
= min

(T1,...,Tm)

"
TX
t=1

y2t

−
m+1X
i=1

 TiX
t=Ti−1+1

ytz
0
t

 TiX
t=Ti−1+1

ztz
0
t

−1 TiX
t=Ti−1+1

ztyt

 . (3)

We can now state the following results.

Theorem. Suppose that the data are generated according to the process ( 2 ) and that we estimate
a model with change in mean, i.e. zt = 1. Then, under Assumptions 1 and 2 we have for T →∞

1.

ST

³
T̂1, . . . , T̂m

´
T

p→ L (a1, . . . , ap) , (4)

where

L (a1, . . . , ap) = e01
∞X
j=0

DjKDj0e1, (5)

with e1 = (1, 0, . . . , 0)
0 a p-vector, K = diag

¡
σ2u, 0, . . . , 0

¢
, and
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D =



a1 a2 · · · ap

1 0 · · · 0

0
. . . . . .

...

0
. . . . . . 0

...
. . . . . . 1

0 0 · · · 0


the companion matrix of the polynomial A (z) . (6)

2. The limit in (5 ) is such that

L (a1, . . . , ap) > 0. (7)

Proof: See Appendix A.

Thus, from the Theorem we can deduce that ST
³
T̂1, . . . , T̂m

´
/T = Op (L (a1, . . . , ap)). The

following remarks illustrate two specific cases of the process (2) to clarify the results of the Theorem.

Remark 1. If p = 1, then L (a1) = σ2u/
¡
1− a21

¢
and thus lim|a1|→1 L (a1) = ∞. This implies

that when the coefficient a1 approaches −1 or 1, L (a1) goes to infinity and consequently the term
ST

³
T̂1, . . . , T̂m

´
/T explodes.

Remark 2. Let p = 2. We assume without loss of generality that

A (z) = 1− a1z − a2z
2 = (1− α1z) (1− α2z) .

Since the model is assumed to be stationary, we have |α1| < 1 and |α2| < 1. We then obtain

L (a1, a2) =
σ2u (1 + α1α2)¡

1− α21
¢ ¡
1− α22

¢
(1− α1α2)

,

which goes to infinity if at least one of the following conditions is satisfied, i) |α1|→ 1; ii) |α2|→ 1;
and iii) α1α2 → 1.3 Hence, as the roots of A (z) approach the boundary of the stationarity region,
the limit L (a1, a2) becomes large and then so becomes the term ST

³
T̂1, . . . , T̂m

´
/T . These results

may be generalized for an AR(p) process for any p > 2, and we then obtain the same conclusions
as for p = 2.

As a consequence of these two remarks, for any fixed m, only the first term in the criteria
matters asymptotically since the second term goes to 0 as the sample size T increases. Thus, some
breaks will spuriously be inferred by the information criteria since the sum of squared residuals
ST

³
T̂1, . . . , T̂m

´
is monotonically decreasing in m. The results of the Remark 1 then constitute a

theoretical support to the simulation results of Perron (1997).

3Note that the condition α1α2 = 1 implies that the roots of A (z) do not lie in the stationarity region of the AR(1)
process (e.g., Box and Jenkins, 1976, page 58).
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5 Monte Carlo design

We report some Monte Carlo experiments to support the relevance of the theory. To that effect, we
set h = 5, 1 ≤M ≤ 5, the sample size is fixed at T = 150 and the disturbances {ut} are independent
and identically distributed standard normal. The simulation results are based on 1000 replications.
We simulate series according to AR(1) (a1 = 0.8) and AR(2) (α1 = 0.7 and α2 = 0.6) processes
and we run regressions with change in mean (zt = 1). The results given in Table 1 indicate that all
the criteria perform badly since they overestimate the number of structural changes, which implies
that the considered DGP are series generated by stationary processes with M breaks. We now set
a1 = 0.9 and α2 = 0.8, and all the other parameters are kept constant. From the results provided in
Table 2, we observe that the overestimation of the number of breaks becomes more severe when we
increase the autoregressive parameters, which confirms the theoretical results of the two Remarks.
The obtained simulation results show that the conclusions of Perron (1997) don’t depend on the
fact that the DGP is an AR(1) process; even a stationary autoregressive process of order higher
than one leads to an overestimation of the number of breaks.

We have carried out other Monte Carlo experiments with the same characteristics of the con-
sidered data-generating processes, but with the modification that here we estimate a model with
trend-shifts

¡
zt = (1, t)

0¢. The obtained results (not reported but available upon request) provide
the same conclusions as for the case of mean-shifts. A future investigation then consists in finding
a theoretical explanation for the spuriousness that arises by the information criteria when the DGP
is a stationary AR(p) process without breaks and when we run a regression with trend-shifts. This
should be possible at the expense of a more complicated mathematical treatment.

6 Conclusion

This paper has discussed the problem of selecting the number of structural changes using some
standard information criteria for variables generated by stationary autoregressive processes without
any break. We have observed that the estimation of a model with mean-shifts implies the detection
of a spurious number of structural changes. Our findings are then rigorous proofs of this fact. Our
study is then justified by our aim to provide a mathematical support to the spuriousness that arises
by the model selection criteria when choosing the number of breaks.
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Appendix A: Proof of the Theorem

Proof of Part 1. Let φt = (yt, yt−1, . . . , yt−p+1)
0, then from (2)

φt = Dφt−1 + εt,

where D is given by (6) and εt = (ut, 0, . . . , 0)
0. From Theorem 1 of Lai and Wei (1983), we obtain

1

T

TX
t=1

φtφ
0
t
a.s.→ F =

∞X
j=0

DjKDj0, as T →∞,

where K is defined in the Theorem. As a consequence and since yt = e01φt, we have

1

T

TX
t=1

y2t
a.s.→ e01Fe1, (8)

where e1 is a p-vector given in the Theorem. Applying Theorem 3.1.1 of Brockwell and Davis
(1987) and since the model (2) is causal:

yt =
∞X
j=0

ψjεt−j .

From Brockwell and Davis (1987) (Remark 2 page 212), we deduce that

Tvar

Ã
1

T

TX
t=1

yt

!
→ σ2u

 ∞X
j=0

ψj

2 , as T →∞,

consequently var
³
(1/T )

PT
t=1 yt

´
→ 0, and hence (1/T )

PT
t=1 yt

m.q.→ E (y1) = 0, which implies that

1

T

TX
t=1

yt
p→ 0. (9)

For i = 2, . . . ,m+ 1,

1

Ti − Ti−1

TiX
t=Ti−1+1

yt =
Ti

Ti − Ti−1
1

Ti

TiX
t=1

yt − Ti−1
Ti − Ti−1

1

Ti−1

Ti−1X
t=1

yt.

Then

1

Ti − Ti−1

TiX
t=Ti−1+1

yt
p→ λi
λi − λi−1

E (y1)− λi−1
λi − λi−1

E (y1) = E (y1) = 0.

Note that (1/T1)
PT1

t=1 yt
p→ 0. Hence for i = 1, . . . ,m+ 1,

1

Ti − Ti−1

TiX
t=Ti−1+1

yt
p→ 0. (10)
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Using the same arguments as above, we obtain (1/T )
PTi

t=Ti−1+1 yt
p→ 0, which implies together

with (10) that

1

T

m+1X
i=1

³PTi
t=Ti−1+1 yt

´2
Ti − Ti−1

p→ 0. (11)

Note that for zt = 1,

ST

³
T̂1, . . . , T̂m

´
T

= min
(T1,...,Tm)

 1T
TX
t=1

y2t −
1

T

m+1X
i=1

³PTi
t=Ti−1+1 yt

´2
Ti − Ti−1

 .

From (8) and (11), we obtain

ST

³
T̂1, . . . , T̂m

´
T

p→ L (a1, . . . , ap) = e01
∞X
j=0

DjKDj0e1.

This proves the first part of the Theorem.

Proof of Part 2. To prove that L (a1, . . . , ap) > 0, we apply the Proposition 3.1 of Boutahar
(1991) to show that the matrix F is a positive definite matrix and hence L (a1, . . . , ap) = e01Fe1 > 0
since e1 6= 0. This proves the second part of the Theorem.
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Appendix B: Simulation Results

Table 1. Percentage of breaks selected by the information criteria

AR(1) process AR(2) process

M m̂ BIC YIC BIC YIC

1 0 6.9 12.6 5.1 9.4
1 93.1 87.4 94.9 90.6

2 0 0.2 1.1 0.0 0.2
1 3.4 6.6 1.2 33.0
2 96.4 92.3 98.8 96.5

3 0 0.2 0.6 0.0 0.2
1 0.1 1.5 0.0 0.2
2 6.6 13.6 2.8 6.5
3 93.1 84.3 97.2 93.1

4 0 0.1 0.5 0.0 0.1
1 0.0 1.0 0.0 0.1
2 0.8 3.9 0.1 0.5
3 7.3 13.9 2.7 6.4
4 91.8 80.7 97.2 92.9

5 0 0.0 0.4 0.0 0.0
1 0.0 0.7 0.0 0.1
2 0.3 2.8 0.0 0.2
3 1.0 5.9 0.0 0.7
4 11.6 18.1 3.4 8.9
5 87.1 72.1 96.6 90.1
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Table 2. Percentage of breaks selected by the information criteria

AR(1) process AR(2) process

M m̂ BIC YIC BIC YIC

1 0 1.4 2.6 1.6 2.7
1 98.6 97.4 98.4 97.3

2 0 0.0 0.0 0.0 0.0
1 0.8 2.4 0.6 1.4
2 99.2 97.6 99.4 98.6

3 0 0.0 0.0 0.0 0.0
1 0.0 0.1 0.0 0.0
2 1.4 3.8 0.7 2.1
3 98.6 96.1 99.3 97.9

4 0 0.0 0.0 0.0 0.0
1 0.0 0.1 0.0 0.0
2 0.1 1.0 0.0 0.0
3 2.4 7.0 0.9 2.2
4 97.5 91.9 99.1 97.8

5 0 0.0 0.0 0.0 0.0
1 0.0 0.1 0.0 0.0
2 0.1 0.9 0.0 0.0
3 0.1 0.9 0.0 0.3
4 3.8 8.4 1.0 2.7
5 96.0 89.7 99.0 97.0
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