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Abstract

This paper examines the impact of oligopsony power on the location decision of
undifferentiated oligopolistic firms with free entry. In the case where the distance of an
oligopolistic firm from the output market is held constant, it shows that the optimum location
moves away from the oligopsonistic input market if the demand function and the labor
supply function are linear. In the case where the distance of an oligopolistic firm from the
output market is a decision variable, it shows that the optimum location may not move
toward the output market as demand increases if the demand function is convex. These
results are significantly different from the conventional results based on the perfectly
competitive factor market. It indicates that the presence of oligopsony power has important
influence on the location decision of oligopolistic firms.
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1. Introduction 
 
Since Moses’s 1958 pathfinding paper, The Location and Theory of Production, a large 
number of studies have attempted to integrate location theory with neoclassical 
production theory.  Most of studies have focused on two polar cases: perfect competition 
and monopoly, see (Hurter and Martinich 1989).  Little attention was devoted to the 
intermediate and more realistic cases: oligopoly and monopolistic competition. Recently, 
Mai and Hwang (1992) (henceforth MH) incorporated undifferentiated oligopoly into the 
Weber-Moses triangular model and attempted to fill this gap.  Under the assumptions that 
(1) firms make Cournot conjectures about their rivals’ production and location decisions; 
(2) the production function exhibits increasing returns to scale; (3) firms are price takers 
in the input market; (4) firms are free to enter and leave the industry, they obtained the 
following interesting propositions.1

 
MH1. The optimum location is independent of a change in demand if the demand 

function is linear. 
MH2. If the distance of an oligopolistic firm from the output market is held constant, the 

optimum location is independent of a change in demand. 
MH3. In the case where the distance of an oligopolistic firm from the output market is a 

choice variable, the optimum location moves toward (away from) the output market 
as demand increases if the demand function is convex (concave). (MH 1992, pp. 
258-60). 

 
These results are crucially dependent upon the assumption that oligopolistic firms are the 
price takers in the input markets.  However, this assumption is too restrictive.  As is well 
known in microeconomics, firms are likely to exert oligopsony power in buying 
resources because of real world market imperfections, see Bhaskar, Manning, To (2002).  
It would be important to examine the impact of market demand on the location decision 
of free-entry oligopoly when oligopsony power in the input markets prevails.2

    The purpose of this paper is to introduce oligopsony market structure into MH model 
and examine the impact of output demand on the production and location decisions of 
oligopolistic firms.  It will be shown that MH’s propositions are no longer assured if the 
oligopolistic firm has oligopsony power in the input markets 
 

 
2. An Oligopolistic Location Model 

 
 

Following MH (1992), we assume that 
 
                                                 
1 . MH (1992) also considered the impact of demand on the location decision when the production function 
exhibits constant or decreasing returns to scale.  However, it can be shown that no solution exists if there 
are constant and decreasing returns to scale in production and free entry.  In this note, we only consider the 
increasing returns to scale case. 
2.  Mai, Suwanskul and Yeh (1992), Yeh, Mai and Shieh (1996), Shieh and Mai (1997) and Shieh and Yeh 
(2004) have introduced monopsony into the location model.  To our knowledge, no attempts have thus far 
been made to incorporate oligopsony power into the location model. 
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(a) N firms employ two transportable inputs (l and k) located at A and B to produce a 
homogenous product (q) which is sold in the output market C.  The location triangle in 
Figure 1 illustrates the location problem of oligopolistic firms.  In figure 1, the 
distance a and b and the angle π/2 > γ > 0 are known; h is the distance between the 
plant location (E) and C; s and z are the distances of plant location (E) from A and B, 
respectively; θ is the angle between CA and CE. 
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                           Figure 1.   The Weber-Moses Triangle 
 
(b) Firms make Cournot conjectures about their rivals’ production and location decisions 

and enter the industry without any restrictions until there is no economic profit.  
Assume also that equilibra are symmetric.  Thus, we can neglect the location 
dispersion of firms and focus on the impact of market demand on the location decision 
of a representative firm. 

(c) The production function is homogeneous of degree n, 
 
            q = f(l, k)                                                                                                         (1)    
 
     with the following properties: fll + fkk = nq, flll + flkk = (n – 1)fl, fkll + fkkk = (n – 1)fk, 

flll2 + 2flklk + fkkk2 = n(n-1)q, where fl ≡ ∂q/∂l > 0, fk ≡ ∂q/∂k > 0, flk ≡  fkl ≡ ∂2q/∂l∂k > 
0, fll ≡ ∂2q/∂l2 < 0, fkk ≡ ∂2q/∂k2 < 0.  MH (1992) assumes that the production function 
is homothetic.  To simplify our analysis and make calculation tractable, we assume 
that the production function is homogeneous of degree n. 

(d) The industry inverse demand function for output is given by 
 
           P = P(Q, α)                                                                                                           (2)       
 
      where Q = ∑qi is the market quantity demanded, α is a demand shift parameter.  PQ ≡  
      ∂P/∂Q < 0, Pα ≡ ∂P/∂α > 0 and PQα ≡ ∂2P/∂Q∂α = 0, cf. MH (1992, p. 256).  Note 
                              N 
      that ∑ denotes ∑ . 
                             i=1 
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(e) The prices of inputs and output are evaluated at the plant location (E).  The cost of 
purchasing inputs is the price of input at the source plus the freight cost, and the price 
of output is the market price minus the freight cost. 

(f) Firms are the price taker in the K market, but have oligopsony power in the L market.  
Thus, they face an upward sloping labor supply curve, i.e., 

 
             w = w(L), wL ≡ dw/dL > 0.                                                                                (3)      
 
     where L = ∑li is the quantity supplied of labor, cf. Chen and Lent (1992). 
(g) Transportation rates are constant. 
(i)  The objective of each firm is to find the optimum location and production within the 

Weber-Moses triangle which maximizes the profit. 
 
It is of interest to note that the inclusion of oligopsony power in the labor market 
constitutes the only point of departure from the MH model. 
    With these assumptions, the profit maximizing location problem of the representative 
firm is given by 
 
    max Π = [P(Q, α)-th]f(l, k) – [w(L)+t1s]l – (r+t2z)k                                                  (4)  
 
where s = (a2 + h2 – 2ahcosθ)1/2, z = [b2 + h2 – 2bhcos(γ-θ)]1/2; w(L) and r are the base 
prices of l and k at their sources A and B; t, t1 and t2 are constant transportation rates of q, 
l, k; s, z, and h are the distances from the plant location to the source location A, B and 
the market location C.  It is worth mentioning that q, l, k, h and θ are choice variables and 
α, a, b, π/2 > γ > 0 are positive parameters. 
     To simplify our analysis, we first derive the input demand function of l and k in terms 
of q, h and θ based on the following constrained cost maximization problem at a given 
location, 
 
      min L = [w(L) + t1s]l + (r + t2z)k + λ[q – f(l, k)]                                                    (5) 
 
where λ  is the Lagrange multiplier.  Setting the partial derivative of L with respect to l, k 
and λ equal to zero, we obtain the first-order conditions for a minimum as 
 
    ∂L/∂l = ME + t1s - λfl = 0                                                                                          (6)             
    ∂L/∂k =  r + t2z -  λfk = 0                                                                                           (7) 
    ∂L/∂λ =  q – f(l, k) = 0                                                                                               (8) 
 
where ME is the marginal expense of l and ME = [w(L) + wLl] > 0.  The relationship 
between l (or k) and q can be derived by using the standard comparative static analysis,  
 
     ∂l/∂q = (1/J)(A1fkk – B1flk)                                                                                      (9)                  
     ∂k/∂q = (1/J)(B1fll – A1fkl – C1fk)                                                                          (10)  
       J = (1/l)[nq(A1fkk – B1flk) – C1lfk

2] 
          = (1/k)[nq(B1fll – A1fkl) – C1kfk

2]                                                                     (11)       
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where A1 = ME + t1s, B1 = r + t2z, C1 = 2wL + wLLl, and J < 0 by the second-order 
condition. 
    In MH (1992), oligopsony does not exist, i.e., ME = w and C1 = 0, we can obtain 
     
     ∂l/∂q = (l/nq) and ∂k/∂q = (k/nq).                                                                      (12) 
 
The results in (9) – (11) and (12) are similar to those in the non-spatial model, cf. 
Silberberg (1978, pp. 201-202).  Equation (12) indicates that if the production function is 
homogeneous, delivered prices are independent of input usage and the input proportion 
depends only upon the constant delivered price ratio.  A change in output will not change 
input proportion.  However, in the case where oligopsony exists, the delivered price ratio 
changes with input usage.  A change in output and inputs will change the delivered price 
ratio and then input proportion.  Thus, the expansion path is not an isocline and the result 
in (12) no longer applies. 
    It is worth mentioning that if the oligopolistic firm does not have oligopsony power, 
the delivered prices are constant, as MH (1992, p. 255) pointed out, the cost function can 
be written as the product of two functions: a function of output and another function of 
the delivered prices only, i.e., C(q) = c(w + t1s, r + t2z)H(q).  However, the delivered 
prices are a function of quantity used and the cost function would be C(q) = [w(L) + 
t1s]l(q,θ,h) + (r+t2z)k(q,θ,h) if the oligopolistic firms have oligopsony power. 
    Substituting the input demand functions, l = l(q,θ,h) and k = k(q,θ,h) into (4), we 
obtain the profit as a function of q, θ and h.  Via the envelope theorem, the first-order 
conditions for a maximum would be 
 
       ∂Π/∂q = [(P + PQq) – th] – (ME + t1s)(∂l/∂q) – (r + t2z)(∂k/∂q) = 0                  (13)  
       ∂Π/∂θ = - t1sθl – t2zθk = 0                                                                                   (14)     
       ∂Π/∂h = - tq – t1shl – t2zhk  = 0                                                                           (15)      
 
where sθ ≡ ∂s/∂θ, zθ ≡ ∂z/∂θ, sh ≡ ∂s/∂h, zh ≡ ∂z/∂h.  Assume that the second-order 
conditions are satisfied and the possibility of the corner solution is excluded, cf. MH 
(1992).  We can solve (13) - (15) for q, θ and h when entry is prohibited. 
    If free entry is allowed, each firm in the industry earns normal profit only.  The 
following condition must be satisfied. 
 
     Π = [P(Nq, α) – th]q – [w(Nl)+t1s]l(q,θ,h) – (r+t2z)k(q,θ,h) = 0                          (16) 
 
Equations (13) – (16) can be solved for q, θ, h and N in terms of α and other parameters.  
This completes the model that comprises the basic analytical framework. 
 
3. The Effect of Demand on Location Decision 
 
We are now in a position to examine the effect of a change in demand for output on the 
optimum location.  Following MH (1992), we consider two cases: (1) h is given and θ is 
the choice variable; (2) both h and θ are choice variables. 
 
 

 4



  

 
3.1. h is given 
 
    In this case, Equation (15) can be dropped from the first-order conditions.  Totally 
differentiating (13), (14) and (16) and applying Cramer’s rule, we obtain 
 
       (∂θ/∂α)h = (-1/JD3)Pαt2zθC1fk[PQQq3 + E – wLLl2(∂l/∂q)]                                       (17) 
       (∂q/∂α)h =(q3/D3)PαΠθθ[PQQq3 + E – wLLl2(∂l/∂q)]                                                (18)              
       E = (wLl/J)[(n-1)q(A1fkk – B1fkl) – C1lfk

2] > 0                                                       (19) 
  
where zθ = - bhz-(1/2)sin(γ – θ) < 0, and Πθθ < 0, (∂l/∂q) > 0, and J < 0 and D3 ≡ (ΠqqΠθθ - 
Πθq

2)PQq2 – (ΠqNΠθθ)PQ(N – 1)q < 0 by the second-order conditions.  Note that C1= 2wL 
+ wLLl is normally positive, see Varian (1990, pp. 430-433). 
    Assume that the oligopolistic firm is a price taker in the L market, i.e., C1 = 0.  It 
follows from (17) that (∂θ/∂α)h = 0.  This result is consistent with MH2.   However, when 
the oligopolistic firm has oligopsony power, the sign of (∂θ/∂α)h  can not be determined.  
Thus, we can conclude that the effect of demand on the optimum location is ambiguous.  
Next, we consider the case where the demand function and the labor supply function are 
linear, i.e., PQQ = 0 and wLL = 0.  It is easy to see from (17) that 
 
     (∂θ/∂α)h = (-1/D3J)Pαt2zθC1fkE > 0                                                                         (20) 
 
Thus, we can conclude that 
 
Proposition 1.  If h is constant, the optimum location of an oligopolistic firm moves away 

from the oligopsonistic input market if the market demand function and the labor 
supply function are linear. 

 
It is clear that this result is significantly different from MH2.  It shows that both the 
market demand function and the labor market supply condition play an important role in 
the determination of firm’s location if oligopsony exists.  
     The economic interpretation of this proposition is as follows.  If the demand function 
and the labor supply function are linear, a rise in the market demand will increase the 
output level of each oligopolistic firm when free entry allowed, i.e., (∂q/∂α)h > 0.  Thus, 
if the production function exhibits increasing returns to scale, an increase in the output 
level leads to a fall in the input ratio (l/k) via factor substitution.  Hence, the material pull 
of k is greater (smaller) than the material pull of l, i.e., t2zθk > t1sθl.  As a result, the 
oligopolistic firm has an incentive to move its plant away the oligopsonistic labor market. 
 
3.2. h and θ are choice variables 
 
     In this case, we apply the standard comparative static analysis to (13) – (16) and 
obtain  
 
     (∂θ/∂α) = (1/D4)Pα(ΠhqΠθh -  ΠθqΠhh)[PQQq3 + E – wLLl2(∂l/∂q)]                      (21) 
     (∂h/∂α) = (1/D4)Pα(ΠθqΠθh -  ΠθθΠhq)[PQQq3 + E – wLLl2(∂l/∂q)]                      (22) 

 5



  

     (∂q/∂α) = (1/D4)Pα(ΠθθΠhh -  Πθh
2)[PQQq3 + E – wLLl2(∂l/∂q)]                          (23) 

 
where Πhq = (-t/Jl)[(n–1)q(A1fkk–B1fkl)+(C1fk/J)(tfk+t2zh), Πθh = -(t1sθhl–t2zθhk)–
[t1sθ(∂l/∂h)+t2zθ(∂k/∂h)], Πθq = (1/J)t2zθC1fk, Πhh= -(t1shhl+t2zhhk)–t1sh(∂l/∂h)+ 
t2zh(∂k/∂h)], Πθθ = - (t1sθθl-t2zθθk) - [t1sθ(∂l/∂θ)+t2zθ(∂k/∂θ)], D4 = PQq2D3 – q2PQ(N – 
1)(PQ+PQQq)D2, D2 and D3 are the second-order and the third-order principal minors of 
Hessian determinant D4, and (ΠθθΠhh - Πθh

2)> 0, D4 > 0, by the second order conditions.   
    Assume that the market demand function is linear, i.e., PQQ = 0.  From (21) and (22), it 
is easy to see the signs of (∂θ/∂α) and (∂h/∂α) are ambiguous.  Thus, we have 
 
Proposition 2.  When oligopsony power exists and the production function exhibits 

increasing returns to scale, the location decision of an oligopolistic firm depends upon 
a change in the market demand if the demand function is linear. 

 
This result is quite different from MH1.  It shows that MH1 can not be applied to the 
oligopsony case. 
    Next, we consider the case where C1 = 0 and PQQ ≠  0.  Applying these conditions into 
(21) and (22), we obtain 
 
        (∂θ/∂α) = [- t(n -1)/nD4]q3PαPQQΠθh                                                                     (24) 
        (∂h/∂α) = [t(n -1)/nD4]q3PαPQQΠθθ                                                                                                           (25) 
 
where (n – 1) > 0, Pα > 0, Πθθ < 0, D4 > 0.  Since the signs of PQQ and Πθh can not a priori 
be determined, the signs of (∂θ/∂α) and (∂h/∂α) are ambiguous. Furthermore, from (24), 
we can show  
 
      (∂h/∂α) > (<) 0, as PQQ < (>) 0                                                                                (26) 
 
In other words, an increase in demand causes each firm’s output level to rise (∂q/∂α > 0) 
and the input-output ratio to fall if the demand function is convex (PQQ > 0).  Hence, the 
relative strength of the input pulls to the market pull will decrease and the optimum 
location of the firm will move toward the output market.  Clearly, this is MH3. 
   In the case where C1 > 0 and PQQ ≠ 0, from (22), we can see that the sign of (∂h/∂α) is 
ambiguous.  Thus, we can conclude that 
 
Proposition 3.  When oligopsony power exists and the production function exhibits 

increasing returns to scale, the optimum location may not move toward (away from) 
the output market as demand increases if the demand function is convex (concave). 

 
Obviously, this result is different from MH3.  In the case where oligopsony power exits,  
an increase in demand may cause each firm’s output level to rise (∂q/∂α > 0) and the 
input-output ratio to fall if the demand function is convex (PQQ > 0).  However, the 
relative strength of the input pulls and the output pull may not decrease.  As a result, the 
optimum location may not move toward the output market. 
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4. Concluding Remarks 
 
We have examined the impact of oligopsony power on the relationship between a change 
in demand for output and the location decision of undifferentiated oligopolistic firms.  
MH’s study focuses on the case where oligopolistic firms are price takers in the labor 
market.  Our work has generalized the study of MH in the sense that their results are valid 
only under some special circumstances. 
    Assuming that oligopolistic firms have oligopsony power, we show that the optimum 
location of an oligopolistic firm isn’t independent of a change in demand if the demand 
function is linear.  This indicates that MH1 can not be applied to the case where 
oligopsony power exists.  In the case where the distance of an oligopolistic firm from the 
output market is held constant, we show that the optimum location moves away from the 
oligopsonistic input market if the demand function and the labor supply function are 
linear.  In the case where the distance of an oligopolistic firm from the output market is a 
choice variable, we further show that the optimum location may not move toward (away 
from) the output market as demand increases if the demand function is convex (concave).  
These results are significantly different from MH2 and MH3.  It indicates that the 
presence of oligopsony power has significant influence on the location decisions of 
undifferentiated oligopolistic firms. 
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