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Abstract

This note reexamines Abreu and Brunnermeier's (2003) analysis of a bubble that persists
towards synchronization risk. We find that a certain condition that usually does not hold is
required for the existence of synchronization risk.
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1 Introduction

The purpose of this note is to reexamine the model presented in Abreu and
Brunnermeier (2003), hereafter referred to as AB (2003). AB (2003) consider
a market where arbitrageurs face uncertainty about when their peers will ex-
ploit a common arbitrage opportunity. In such a market, arbitrageurs face
synchronization risk, and they delay usage of the arbitrage opportunity. The
price-correction time is also associated with the pressure of the arbitrageurs�
selling. AB (2003)1 conclude that the bubble persists because of the delay
in arbitrage. Their model suggests that a stochastic bubble persists due to
arbitrage delay. As rational arbitrageurs are sequentially informed about the
bubble bursting, they cannot synchronize to sell at the same time. Accord-
ingly, the bubble persists owing to the delay in arbitrage delay2.
Although AB (2003) incorporate a continuous-time model in their analy-

sis, we check whether their model also exists in a discrete-time setting. We
provide the following negative result: a certain condition that usually does
not hold is required for the existence of synchronization risk. In Section 2,
we introduce the discrete-time AB (2003) model and induce the existence
condition of synchronization risk. Section 3 provides a conclusion.

2 Model

2.1 The discrete-time approximation model of AB (2003)

We represent discrete time as 0 = t0 < t1 < ::: < tn, and a length of one
trading period as �(� = ti+1� ti; i 2 [0; n)). We consider a market where m
risk-neutral arbitrageurs exist (m is a positive number). There is only one
stock in the market. Each arbitrageur holds 1

m
units of stock. We de�ne a

sequence of stock prices as  i, and a sequence of fundamental prices as vi.
The interest rate on a risk-free asset is r.
Prior to time tb, the price of the stock is equal to its fundamental price:

 i = vi(i 5 b), and the interest rate is g(> r). In other words, the funda-
mental price is higher than the risk-free rate before time tb.
At time tb, a shock occurs and the stock�s fundamental growth rate adjusts

to equal the risk-free interest rate. As a result, a bubble emerges after time
tb. This model treats time tb as a random variable.

1Chamley (2004) surveys their paper.
2Blanchard (1979) and Blanchard and Watson (1982) analyze the mechanisms of bubble

persistence and crash. Their model concludes that the crash stochastically occurs under a
no-arbitrage condition. However, their model does not consider the mechanisms underlying
a stochastic bubble.
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After time tb, the interest rate on the fundamental prices becomes r.
Accordingly, it di¤ers from the interest rate on the stock: g. Therefore, the
sequence of fundamental and stock prices becomes:

 i = (1 + g)
(i�b)� > vi = (1 + r)

(i�b)� (1)

Each risk-neutral arbitrageur detects mispricing in the turn after time
tb. All arbitrageurs become aware of the mispricing in each period ti from
tb to tb+m(= tb + �)3. A new arbitrageur becomes aware of the mispricing
during each � period. This model de�nes the arbitrageur who �nds the
mispricing at time tj as the arbitrageur j. However, each arbitrageur j
cannot know how many arbitrageurs have received the price information
before or after themselves. Accordingly, the mispricing information does
not become common knowledge. The �rst type of informed arbitrageur is
arbitrageur b + 1, and the last type of informed arbitrageur is arbitrageur
b +m. In other words, arbitrageur j receives the mispricing information at
time tj(= tb+l; l 2 [1;m]).
Arbitrageurs sell their own stock for arbitrage pro�t as soon as they

learn of the mispricing. As arbitrageurs receive this mispricing information
sequentially, they cannot sell simultaneously. While the selling pressure is
strictly smaller than �(< 1), the bubble persists. We consider the equilibrium
where all arbitrageurs choose the same strategy �the symmetric equilibrium�.
This model de�nes the bubble term as equation (2)4.

�(i� b) =
 i � vi
 i

= 1� (1 + r
1 + g

)
(i�b)�

(2)

We assume that the bubble collapses within �� periods5. Even if the
selling pressure never exceeds �, the bubble collapses in the tb+� period. As
a result, we can calculate the maximum of the bubble term as � = 1� �(�).
It is assumed that arbitrageur j sells out the stock for � 1� periods after

learning the mispricing information. In any period tj+�1, arbitrageurs h (th 5
tj+�1) sell out their stock, and arbitrageurs k (tk = tj+�1+1) hold their stock;
only one arbitrageur sells out of the stock in each period.

3The information that bubble bursts is spreading in the � periods. It takes � to be
informed of one arbitrageur. So, the relation: � = m� exists. Under the assumption that
the �rst arbitrageur receives the information at the tb, all arbitrageurs are informed at the
tb+m(tb+ �

�
).

4The same de�nition is applied by AB (2003).
5� is exogenously given.
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Each arbitrageur j considers that the bubble persists at time tj. Arbi-
trageurs choose the following trigger strategy in the equilibrium.

Proposition 1 Trigger Strategy
In the equilibrium, arbitrageur j sells out his or her own stock at time

tj+�1 after noticing the shock. Arbitrageur j does not buy back the stock.
Arbitrageur $j$ takes the optimal strategy in delaying selling out the stock.
In other words, arbitrageur j�s optimal strategy is to hold the stock for � 1�(=
tj+�1 � tj) periods after �rst noticing the mispricing.

When arbitrageurs undertake the trigger strategy, they begin to sell out
the stock after time tb+1+�1. We de�ne time tb+�� as the time when the selling
pressure crosses �. The following equation holds.

(� � � � 1)�

�
= � (3)

During the periods that arbitrageur j thinks that the capital gain of
holding the stock exceeds the expected loss from the crash, he or she continues
to hold the stock.
Arbitrageur j guesses the crash probability at time tj+� 6. When the

bubble bursts at time tj + � , the following equations are established.

(b+ � �)� = (j + �)�, (b = j + � � � �) (4)

Corollary 1 Arbitrageur j believes in a crash probability at time tj+� . This
belief is represented by the conditional probability density function: �(tj+� jj).
Arbitrageur j thinks that the crash probability will become higher. Therefore,
�(tj+� jj) is a monotonically increasing function of � . All arbitrageurs think
that bubble persists when they themselves �nd the mispricing. So, �(tjjj)
becomes 0.

In addition, we de�ne a distribution function of the crash probability as
�(tj+� jj), and the transaction cost in this market as C(< 1). Arbitrageur j
is faced with the problem of maximizing expected pro�t as below.

Max
��1P
s=0

f( 1
1+r
)(j+s�b)�(1� �(j + s� b))(1 + g)(j+s�b)��(tj+� jj)g

6AB (2003) speci�es the crash probability in a continuous-time setting. The next
subsection speci�es this.
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+(
1

1 + r
)(j+��b)�(1 + g)(j+��b)�(1� �(tj+� jj))� C (5)

We de�ne D(�; j) as the di¤erence between the increase of the �rst term
and the decrease of the second term from time t��1 to time t� .

D(�; j) = (1+g
1+r
)(j+��1�b)�f(1� �(j + � � 1� b))�(tj+� jj)g

�f(1 + g
1 + r

)(j+��b�1)�(1� �(tj+��1jj))� (
1 + g

1 + r
)(j+��b)�(1� �(tj+� jj)g (6)

This di¤erence equation: D(�; j) is a nonincreasing function of � 7. The
optimal strategy of arbitrageur j is to sell out when he or she estimates
that the expected pro�t of selling out with the mispricing is as large as the
expected loss of the bubble bursting. The arbitrage pro�t is zero when taking
the optimal strategy: � = � 1. Therefore, no arbitrage condition (7) exists by
substituting the right-hand side of equation (6) into zero.

�(tj+� jj)
1� �(tj+� jj)

=
(1 + g)� � (1 + r)�
�(j + � 1 � b)(1 + g)�

(7)

The left hand side of the above equation is de�ned as the hazard rate:
h(tj+� jj). In a symmetric equilibrium, all arbitrageurs take the optimal strat-
egy: � = � 1. All arbitrageurs delay to arbitrage for � 1� periods. Considering
a no-arbitrage condition, an equilibrium condition is given as follows;

Proposition 2 Perfect Bayesian Nash Equilibrium: Each arbitrageur j holds
his or her own stock upon noticing the mispricing. In an endogenous crash
equilibrium8, the bubble bursts when an arbitrageur j(tj = tb+����1) sells out
the stock at the time when the no-arbitrage condition (7) is satis�ed. Under
the condition that (1+g)

��(1+r)�
�

< 1, this equilibrium is uniquely determined.

j = b+m� (8)

In equilibrium, the bubble bursts when arbitrageur b +m� learns of the
mispricing.

7The induction is referred to in the appendix.
8An endogenous crash means that the bubble bursts before the exogenous crash time:

tb+� .
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2.2 Crash probability�s speci�cation

We consider the prior distribution as a discrete approximation of an expo-
nential distribution function9. Arbitrageur j�s prior distribution function of
tb : �(tb) is given as follows:

�(tb) = 1� pb; 0 < p < 1 (9)

Then the prior density function �(tb) is calculated by using the de�nition
of the distribution function.

�(tb) = �(tb+1)� �(tb) = (1� p)pb (10)

Arbitrageur j�s posterior distribution function of the bursting time tb
is calculated as follows. Equation (10) represents the prior belief, and it
shows the state where there is no information about time tb. Arbitrageur j
estimates that the bubble bursts during the interval: tj�m 5 tb 5 tj�1 after
receiving information about the burst at the tj. Therefore, the posterior
distribution function: �(tbjj) follows the truncated distribution function with
the interval: tj�m 5 tb 5 tj�1. �(tbjj) is calculated by using the de�nition
of the conditional probability.

�(tbjj) =

b�1P
j=i�m

�(tj)

�(tj�1)� �(tj�m)
(11)

Arbitrageurs who discover the mispricing later estimate a higher crash
probability. The posterior probability function is inducted as follows.

�(tbjj) = �(tb+1jj)� �(tbjj) (12)

We assume that arbitrageur j estimates that the bursting time is tb+� .
As the bubble bursts at time tj+� when he or she sells out the stock, the
equation below is established.

(b+ �)� = (j + �)�; (b = j + � � �) (13)

By equation (8), the variable � that represents the bursting time becomes:

� = m�+ �

9AB (2003) de�ne the prior distribution as an exponential distribution function.
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By substituting the equation above into (12), the hazard rate: h(tj+� jj)
at time tj+� when arbitrageur j sells out is calculated. By substituting the
above equation into (7) and (8), the necessary conditions of the symmetric
Bayesian Nash equilibrium become:

h(tj+� jj) =
�(tj+� jj)

1� �(tj+� jj)
=
(1 + g)� � (1 + r)�
�(� 1 +m�)(1 + g)�

(14)

The optimal trading time: tj+�1 is the solution of equation (14). The
bubble bursts when arbitrageur � 1+m� sells out the stock at time b+� 1+m�
in equilibrium. Arbitrageur � 1+m��s optimal strategy becomes the solution
of the logarithm transformation of (15). For the sake of simplicity, we specify
the crash probability as the case where p is equal to 1

2
.

(� 1 +m�)� =
ln(1 + g)� ln[(1 + g)� � (2� 22�m�)f(1 + g)� � (1 + r)�g]

ln(1 + g)� ln(1 + r)
(15)

In an endogenous crash, selling pressure crosses �(< 1) at tb+��. There-
fore, the equation below exists by equation (6) and (10).

� �� = (� 1 +m�)� (16)

By substituting (16) into (15), we solve the tb+�� as follows:

� �� =
ln(1 + g)� ln[(1 + g)� � (2� 22�m�)f(1 + g)� � (1 + r)�g]

ln(1 + g)� ln(1 + r) (17)

The comparative static of equation (17) shows that either the biggerm(�)
or �, the longer the length of the bubble�s persistence interval. This is the
same implication that AB (2003) prove in the continuous-time setting.

2.3 Numerical Example

In Section 2.2, we specify the arbitrageurs�optimal strategy � 1 as in equation
(17) using a discrete approximation of the exponential distribution function.
Since the optimality of � 1 is proved in Proposition 1 under the condition of
positive D(1; j), there is a possibility of positive � 1. We check the domain of
the nonpositive � 1 to satisfy the existence of arbitrage delay.
These relations are expressed as a numerical example in Figure 1. In

this calculation, the numerical value is given as follows: g = 0:05, r = 0:03,
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� = 0:5. The horizontal axis is the trading time interval (�), and the vertical
axis represents the number of arbitrageurs (m). A blackened domain means
a negative � 1.
We can see that there is a positive � 1 in the smaller trading time interval

region. As a result, there is a very high probability of positive � 1 in the
continuous-time model of AB (2003). However, in a discrete-time setting,
we �nd that the threshold of the positive � 1 domain is under some value
�(= m�)10. In other words, synchronization risk exists when the information
about the burst is conveyed to all arbitrageurs in a shorter horizon.

3 Conclusion

In this paper, we make two main points about AB (2003). First, this paper
shows that AB (2003) is consistent with a discrete-time setting, and the
bursting time is speci�ed as in equation (17). This implication concerning
the synchronization risk applies to a discrete-time setting.
Second, we �nd that synchronization risk exists when information about

the burst is extended to all arbitrageurs in a shorter time using a numerical
example. Therefore, it is also an important future task to check whether this
model�s implications are plausible in a positive analysis.

10The shape of the threshold line shows that m is inversely proportional to �.
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4 Appendix

4.1 Proof of Proposition 1

We show that in equilibrium, the arbitrageur�s optimal strategy is a trigger
strategy. Equation (6) means that the trigger strategy satis�es the necessary
condition of maximizing the problem. We now need to check the su¢ cient
condition of maximizing.
Proof. The su¢ cient equation is equivalent to the condition that (6) is a
nonincreasing function when D(1; j) > 0 exists.

D(�; j) = (1+g
1+r
)j+��b�1(1� �(j + � � b� 1)�(tj+� jj)

�f(1+g
1+r
)j+��b�1(1� �(tj+��1jj))� (1+g1+r

)j+��b(1� �(tj+� jj)g
The distribution function satis�es �(tj+� jj) = �(tj+��1jj) + �(tj+� jj),

and we substitute it into D(�; j):
D(�; j) = (1+g

1+r
)j+��bf1+g

1+r
(��(j + � � b)�(tj+� jj)) + g�r

1+r
(1��(tj+��1jj)g

D(�; j) = 1
1+r
(1+g
1+r
)j+��bf�(1 + g)�(j + � � b)�(tj+� jj)

+(g � r)(1� �(tj+��1jj))g
The sign of D(�; j)�s increment becomes as follows:
f�(j + � + 1� b)�(tj+�+1jj)� �(j + � � b)�(tj+� jj)g > 0 exists.
Therefore, the sign of D(�; j)�s �rst term increment becomes negative.
(1� �(tj+� jj))� (1� �(tj+��1jj)) = �(tj+��1jj))� �(tj+� jj)) < 0
So, the sign of D(�; j)�s second term increment becomes negative.
As the equations above show that the sign of D(�; j)�s increment is neg-

ative, (6) is a nonincreasing function.

4.2 Proof of Proposition 2

We show the symmetric equilibrium�s uniqueness as follows. Equation (7)
exists if the variable � indicates the optimal strategy of equilibrium. The
uniqueness is proven by the following two steps.
Proof. Step 1: The left-hand side of equation (7) is a monotonically increas-
ing function of � , the right-hand side is a monotonically decreasing function.
Step 2: �(tj jj)

1��(tj jj) <
(1+g)��(1+r)�
�(j�b)(1+g)� ; �(tb+� jj)

1��(tb+� ji) >
(1+g)��(1+r)�
�(j+��b)(1+g)�

The left-hand and right-hand sides of equation (7) cross one point when
Steps 1 and 2 above are both satis�ed. Therefore, an unique equilibrium:
� = � 1 is established.
(The Proof of Step 1)
By corollary 1, �(tj+� jj) is a monotonically increasing function of � . By

the property of a distribution function, �(tj+� jj) is a monotonically increasing
function of � when �(tj+� jj) is a monotonically increasing function. We need
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to check that the left-hand side of equation (7) is a monotonically increasing
function by the sign of the increment in the time tj+�+1, and tj+� .

signf �(tj+�+1jj)
1��(tj+�+1jj) �

�(tj+� jj)
1��(tj+� jj)g

= signf�(tj+�+1jj)f1��(tj+� jj)g��(tj+� jj)f1��(tj+�+1jj)gf1��(tj+�+1jj)gf1��(tj+� jj)g g
Since the sign of the denominator is positive, we only check whether the

sign of the numerator is positive.
�(tj+�+1jj)f1� �(tj+� jj)g � �(tj+� jj)f1� �(tj+�+1jj)g
= �(tj+�+1jj)f1� �(tj+� jj)g � �(tj+� jj)f1� �(tj+� jj)� �(tj+�+1jj)
= �(tj+�+1jj)� �(tj+� jj)gf1� �(tj+� jj) + �2(tj+� jj) > 0
We check that the left-hand side is a monotonically increasing function.

We next check that the right-hand side is a monotonically decreasing func-
tion.
Because �(i+ � � b) is a monotonically decreasing function of � :
(1+g)��(1+r)�

�((i+�+1�b))(1+g)� �
(1+g)��(1+r)�
�((i+��b))(1+g)�

= f(1+g)��(1+r)�gf�((i+��b))��((i+�+1�b))g
(1+g)��((i+�+1�b))�((i+��b)) < 0

The above equation shows that the right-hand side is a monotonically
decreasing function.
(Proof of Step 2)
�(tj jj)
1��(tj jj) = 0 <

(1+g)��(1+r)�
�(j�b)(1+g)� ; �(tb+� jj)

1��(tb+� ji) = 1
(1+g)��(1+r)�
�(j+��b)(1+g)� < (1+g)��(1+r)�

�
< 1 = �(tb+� jj)

1��(tb+� ji)
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Figure 1: A numerical example
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