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Abstract

In this note we introduce a family of functions that various theoretical results have revealed
as useful mobility measures. These functions have enabled us to circumvent an impossibility
result obtained by Shorrocks (1978), by adapting one of his axioms to the context of mobility
as movement. A particular case belonging to this family is the Bartholomew index, which is
widely used in the empirical literature.

The authors thank Miguel A. Ballester and one anonymous referee for their helpful comments and suggestions. Financial
support from MEC (Coordinated Project SEJ2005-08738-C02-01-02) and MCYT (CICYT SEC2003-08105) is gratefully
acknowledged.

Citation: Alcalde-Unzu, Jorge, Roberto Ezcurra, and Pedro Pascual, (2006) "Mobility as movement: A measuring proposal
based on transition matrices." Economics Bulletin, Vol. 4, No. 22 pp. 1-12

Submitted: June 13, 2006. Accepted: June 14, 2006.

URL: http://economicsbulletin.vanderbilt.edu/2006/volume4/EB-06D30001A. pdf


http://economicsbulletin.vanderbilt.edu/2006/volume4/EB-06D30001A.pdf

1 Introduction

The vast literature devoted to the study of income inequality is usually
formulated in static terms, since it is based on the information supplied by
cross-sectional data from the distribution under consideration (see Lambert
1993, or Cowell 1995, for a review). Static analysis provides only a partial
view of the distribution examined, however, since it provides no information
about the dynamics of the distribution over time, an omission that is particu-
larly important from the social welfare point of view (Friedman 1962). This,
along with the increasing availability of longitudinal data sets, explains the
growing interest in the measurement of the intra-distribution mobility that
can be seen in the literature (see Maasoumi 1998, or Fields and Ok 1999a,
for a review).

Intra-distribution mobility can, as a result of its multidimensional nature,
be studied from various different approaches. Thus, some authors identify
mobility with temporal independence (Shorrocks 1978), while others stress
that aspect of mobility that is related to movement per se (Fields and Ok
1996, 1999b). Working in line with the latter approach, this note introduces
a family of functions that various theoretical results have revealed as useful
mobility measures. Specifically, this family of functions has enabled us to
circumvent an impossibility result obtained by Shorrocks (1978), by adapting
one of his axioms to the context of mobility as movement. A particular case
belonging to this family is the Bartholomew index, which is widely used in
the empirical literature.

2 Definitions and properties

Let N be the natural numbers, with N* = (N U {0}). Then, we define
n € N as the number of individuals in the society. Additionally, let 3 and
yi' be the income of individual i at two different points of time, #o and #;,
with y' = (yi°,...,y%) € R? and y"* = (yi',...,yt) € R?. Our objective
is to measure the intra-distribution mobility between t; and t;. A review
of the literature shows that one of the options most commonly used for this
purpose involves the construction of transition matrices (Bartholomew 1973,
Shorrocks 1978). In order to define the concept of transition matrix, let
us now suppose that individuals have been divided into m < n non-empty,
exhaustive and mutually exclusive classes in ascending order of income level.
A transition matrix will be a square matrix P = [p;x] € RT*™, where pjx
denotes the proportion of individuals belonging to class j at t; that have



m
shifted to class k at ;. According to this definition, we have that > p;, =1
k=1
for all j € {1,...,m}, so that P is a stochastic matrix. Additionally, let
be the set of all possible transition matrices. In this literature, a mobility
index is defined as a continuous function M : Q — R,.

It is worth noting that there are different approaches to the study of intra-
distribution mobility (Fields and Ok 1999a). The main difference between
them being the way in which each one defines those situations characterized
by maximum mobility. One alternative, for example, is to identify perfect
mobility as the situation in which the probability of moving to any class
is independent of that originally occupied (Shorrocks 1978). Note that this
implies that p;;, = py, for all j,k,1 € {1,...,m}. This definition will coin-
cide with maximum mobility only if we identify mobility with the notion of
temporal independence. However, as already mentioned in the Introduction,
in this note we adopt an alternative approach that highlights the dimension
of mobility that is directly related to movement per se. In this context, we
can intuitively identify perfect mobility with a situation in which all the in-
dividuals in each of the m classes move to the class furthest away from their
original class. In order to capture this idea, let us consider the set ¥ C €2,
where P € ¥ if and only if pj, = 0 when [j < ™ &k # m]or [j > 2k # 1].

We will now examine a series of basic properties that a mobility measure
M based on the information provided by a transition matrix P can reasonably
be expected to satisfy.

e Normalization (NOR): Range M(-) = [0, 1].

e Monotonicity (MN): For all P, P' € Q such that p;z > p}, for all j # k
and pj > pfy, for some j # k, M(P) > M(F').

e Strong immobility (SIM): M(P) = 0 if and only if P = I, where I is
the identity matrix.

o Mazimum mobility (MM): M has a maximum, and if M(P) is a max-
imum, P € 9.

e Strong mazimum mobility (SMM): M reaches its maximum in P if and
only if P € 9.

NOR, MN and SIM were proposed by Shorrocks (1978). Likewise, MM and
SMM are based on an original property imposed by this author, and subse-
quently adapted to our context of mobility as movement. MM establishes
that there is at least one element in ¥ that describes a situation of maximum



mobility. In turn, SMM is a strong condition, since it requires that all the
transition matrices in 9 (and no others) represent maximum mobility.

In order to present other properties also considered in our study, we need
to denote as P; the row j of matrix P, that is, P; = (pj1,-..,Pjm)-

e Independence of irrelevant classes (IIC): For all h < m and for all
PA PB PC PP ¢ Q such that P} = PY, PP = PP, P* = PP and
P = PP for all i # h,

M(PY) > M(P?) & M(P°) > M(PP)

To clarify the implications of IIC, let us suppose that we have two pairs
of transition matrices, (P4, PP) and (P, P”), such that in both pairs all
rows except h are identical. If row h is equal in matrices P4 and P¢ and
the same occurs in matrices P? and PP, then the comparison in terms of
mobility between P4 and P® should be the same as the ranking between
P¢ and PP. Specifically, the idea of 1IC is that equal rows play no role in
ordinal mobility comparisons. To shed further light on this question, let us
consider the following transition matrices:

PA__[Q? 03} PB__[Qg &1}

0.5 0.5 0.5 0.5
0.7 0.3 0.9 0.1

C _ D _

=[] e

Note that IIC does not establish any comparison between P4 and P? in
terms of their mobility, and the same occurs with P¢ and PP. However, by
virtue of this property, we are able to establish that M (P4) > M(PP) if and
only if M (PY) > M(PP).

o Symmetry of rows along the main diagonal (SRD): For all h ¢ {1, m},
for all A € [1, Min{h — 1, m — h}] and for all P, P’ € Q, if the follow-
ing conditions hold:

1. P,= P! for all i # h,

2. ppe = phy, for all & & {h — A\, h+ A}, and

3. Phh=x) T Ph(hn) = Phgn—x) T Phihir)
then, M(P) = M(P').



According to SRD, equal degrees of movement away from an initial class
should be valued equally by M, irrespective of their direction. To further
illustrate the implications of SRD, let us consider the following transition
matrices:

10 0 1 0 0
PE=102 05 0.3 PF=105 05 0
0 03 0.7 0 03 0.7

SRD guarantees that M(PF) = M(PF).

3 A family of mobility measures

In the context described in the previous section, lack of movement be-
tween classes implies that P = I. We can therefore consider the possibility
of measuring the mobility from a transition matrix P by calculating the
distance between P and I for an appropriate distance function.®

Taking this idea as our starting point, let us consider the following family
of functions:

Definition 3.1 A mobility index M belongs to the family of relative indices
m

of mobility as movement if there exist w = (w1, ..., wm) € R with ;wj =1,

J_
a strictly increasing function v : N* — R, and o > 1 such that for all P € €,

M(P) = MDypa(P) =D wi | Y Ipj — izl v(|j — &)
j=1 k=1

where 15, is the corresponding element of the identity matriz.

The family of relative indices of mobility as movement includes various
measures that differ in parameters w, v and «. Specifically, parameter w
allows for a different weight, w;, to be assigned to each of the m rows.
This is not common practice in the literature devoted to the study of intra-
distribution mobility using transition matrix data. However, it would appear
advisable in empirical analysis to consider possible differences in population
or income shares in the various classes. Function v, meanwhile, is included

!For example, Dagum (1980), Shorrocks (1982) or Ebert (1984) have used various
distance functions within the context of inequality measurement. Up to the present,
however, this approach has received very little attention from mobility analysis, save for
a few exceptions (Cowell 1985, Fields and Ok 1996).
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to assign different weights within each row, according to the degree of move-
ments between classes. Finally, parameter o allows for different distance
functions to be considered. We impose that o« > 1, given that in the event of
a < 1, it would be possible to obtain orderings counterintuitive to the notion
of mobility as movement.

Note that a particular case belonging to this family is the mobility mea-
sure proposed by Bartholomew (1973), which corresponds with the case of
« = 1 with v as the identity function.

It is worth mentioning that the indices in this family do not satisfy NOR,
given that the range of variation of M D, , ,(P) is not generally limited to the
interval [0, 1]. In fact, it is not possible to establish a predefined upper bound
independent of m. Nevertheless, we overcome this problem by normalizing
the indices in the following way.

Definition 3.2 A mobility index M belongs to the family of normalized
relative indices of mobility as movement if there exist w = (w1, ..., wy) € RY

m
with Y wj =1, a strictly increasing function v : N* = R. and o > 1 such
j=1

that for all P € Q,

1

gw]{z ’p]k Z]k‘ |.7 k‘:|
M(P) = MDY, (P) = =

w,v,x

J
£ il Maz (w1 0
where 15, is the corresponding element of the identity matriz.

We will now examine the suitability of using the family of normalized rel-
ative indices of mobility as movement. For this, let us consider the following
result.?

Proposition 3.1 All normalized relative indices of mobility as movement
MDY  satisfy NOR, MN, SIM, MM and IIC.

w,v,&

It is also worth noting that the family of normalized relative indices of
mobility as movement will enable us to obtain a decomposition of observed
mobility based on the partition of the population used to define the m classes.

Definition 3.3 Let P € €, lel MDiVUa be a normalized relative mobility
index and let 7 < m. Then, we define the share of overall mobility attributed

to class j in P according to MDWW as the following value:

2The proofs of the various results presented in this note are included in the Appendix.
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i, o (P) =

w,v,a

ol

ot 3|2 lpmian]" o030
Note that CJ , (P) can be interpreted as the proportion of the decrease
that would take place in MDY, ,(P) assuming there were no movements
between classes originating in class j. In fact, it is straightforward that

Z wva( )_1

Although, as we can show in Proposition 3.1, the family of functions
M fo v, Satisfies a group of appealing properties, it contains an infinite num-
ber of potential mobility measures with no a priori criteria by which to assess
their suitability. To address this problem, we consider the following results.

Proposition 3.2 MDWU satisfies SMM if and only if o = 1.

,Q

satisfies SRD if and only if a = 1.

,Q

Proposition 3.3 M D],

Remark 3.1 Propositions 3.1 and 3.2 shows that NOR, MN and SMM are
compatible in the context of mobility as movement. In this respect, it is
important to note that Shorrocks (1978) proves that this is not the case if we
are interested in the notion of mobility related to temporal independence.

4 Conclusion

In this note we have introduced a family of functions, M D], ,, which
various theoretical results show to be useful mobility measures. These func-
tions enable us to circumvent an impossibility result obtained by Shorrocks
(1978), by adapting one of his axioms to the context of mobility as move-
ment. This family also includes the Bartholomew index, which is widely used
in the empirical literature.

The most outstanding feature of MDY, , is its flexibility, given that,
depending on the desired objective, it allows for different weighting schemes
to be used for movements between the classes into which the distribution
under analysis is divided. It is also possible to decompose M D], , according
to the partition used to define the various classes in the populatlon in order
to determine the share of overall mobility attributable to each class. These
features suggest that this family of functions may be useful in future empirical
work.
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Appendix

Proof of Proposition 3.1
We will show that MDY  satisfies all the properties of the result, for

w,U,Q
any possible values of the parameters w, v, a.

e Normalization (NOR): It is straightforward that Range M D, , . = [0,
> wi[v(0) + Maz{v(j — 1),v(m — j)}]é] for all possible parameters
i=1
w, v, a. Accordingly, Range MDY =10,1].

w,v,0

e Monotonicity (MN): Let there be P, P’ € 2 such that p;; > pf, for all
J # k and pj > pj; for some j # k. Let us suppose without loss of
generality that there is only one element in which py # p,, with i # L.
We have that

MDg,p0(P) = MDyyo(P') = wi{[(l = pii)* — (1 = pj3)*v(0) + (pf —
Pl =)}

Then, given that P and P’ are stochastic matrices, we can deduce that
pii < pl; and, therefore, (1—p;;) > (1—p};). This, together with p; > pl,,
implies that M Dy, ;o (P) > MD,,(P") for all possible values of the
parameters. Then, MDY (P)> MDY _(P').

w,v,a W,v,0

e Strong immobility (SIM): To prove the necessary part, if P = I, we

have that |p,; — ¢;| = 0, and therefore, [Z lpjr — i v(|7 — k) "=
k=1

0 for all j € {1,...,m}. Then, MD,,,,(P) = 0 for all possible values
of the parameters. Therefore, MDY  (P)=0.

To prove sufficiency, let us consider a matrix P’ with P’ % I. Then,
Pig = i for all j # k and py > iy for some j # k. Given that all
the indices in this family satisfy MN, M D}, ,(P") > MDY, (I) for
all possible values of the parameters.

e Maximum mobility (MM): Let there be P° € ¥, with P° such that
Py € {0,1}. Then, it can be easily deduced that MDY (P% =

W,U,Q
1 for all possible values of the parameters. We will now prove that

MDY, (P%) > MDY, (P) for all P € Q. To this end we consider

w,,x w,v,x
two separate cases:

1. P e v If pjp € {0,1} for all j, k, clearly, MDY (P) = 1.

w,U,Q

Otherwise, there exists a pair (j, k), such that p,, ¢ {0,1}. Since



P € 9, m must be odd, j = mT“, k e {1,m} and pj; + pjm = 1.
Therefore, for row j:

Q=

Q=
VAN

kf:l D — el o(li — k)| = [0(0) + (0% + p2 oG — 1)]

, 1
< [v(0) + 1%0(j — 1)}]=
due to the concavity of z® with > 1. Then, M D, , .(P)

IN

> w; [0(0) + Maz{v(j — 1),v(m — j})]=. Thus, MDY, .(P) <
j=1
1.
. P ¢ 9. Then, there must be p;; # 0 such that
mif j < 2L
k#
1if j > mil

Then, we divide the proof into two cases:

— Case A: j = k. Then, for row j, given the concavity of z*

with @ > 1, we have the following chain of inequalities:
1

@

Ipis — 1% 0(0) + 32 pliv(li — kl)] <
ki

IA

10(0) + Maw{v(j — 1), v(m — j)} g,p;z] <

< |1%(0) + Maz{v(j — 1), v(m — j)}(;pjk)a] <
< [19(0) + Maz{v(j — 1), v(m — et =

= [(0) + Maz{v(j — 1), v(m = j)}]= .
Then, we have that MD,,,(P) < ij[v(()) + Max{v(j

Y.

—1),v(m — j)}a. Thus, MDY (P) < 1.

w,v,a

— Case B: j # k. An analogous reasoning can be applied:

Ipi; — 1" v(0) + 3 pfiv(ls — k|)] <

k#j
< |1?v(0) + Maxz{v(j — 1),v(m — j)}];p?k <
< [12000) + Mar(v( — 1), v0m — I pe)* <




< [1%v(0) + Max{v(j — 1),v(m — j)l}la]i —

= [(0) + Maz{v(j = 1),v(m = j)}]=

Again, we have that M D, ,.(P) < Z:wj[v(()) + Max{v(j
—1),v(m — j)}]a. Therefore, MDY, _(P) < 1.

w,v,x

e Independence of irrelevant classes (I1C):

The proof of this property is straightforward, since M D, ,.(P) can
also be written as:

MDyypo(P) = wh[kz ok — insl?0(1 — KDJE + 3 il Ipge — iul®
=1

i#h k=1
o(lj — k)]«

Proof of Proposition 3.2

We have shown in Proposition 3.1 that for all P € ¥ such that p;;, € {0,1}
for all j,k, MDJ], ,(P) =1 for all possible values of the parameters. We
also know that for any P’ ¢ 9, MD[, ,(P') < 1. Then, we are going to
prove that for all P € ¥ such that there exists a pair (j, k) with p;, ¢ {0, 1},
MDY, . (P)=1if and only if @ = 1. In these cases, we have that m must

be odd, j = mTH, k € {1,m} and pj1 + pjm = 1. If & = 1, we have that for
rOw j:

$% I = i ol17 = K = 0(0) + (1 + pym)olG = 1) = 0(0) + 07 1)
Accordingly, M D, ,1(P) = i:? i [v(0) + Maz{v(j —1),v(m — j)}]. There-

fore, MD], | (P) = 1.

To prove sufficiency, let us suppose that « > 1. Then, for row j:

1

i D — izl o(li — k)| = [(0) + (0% + P20l — D]* <

< [v(0) +1%0(j — D}

due to the strict concavity of x* with a > 1. Accordingly, M D, , .(P) <
ij[ (0) + Maz{v(j — 1),v(m —j)}] Therefore, MDY, (P) < 1.

w,v,Q

Proof of Proposition 3.3

It is immediate that M DY w1 satisfies SRD. To prove sufficiency, let us
consider P’, P" € Q such that:

10



(1 0 0 0 1 0 0 0]
100 0 05 0 0.5 0
p— 0 1 0 pr—|0 01 0
(000 ... 1 0 00 ... 1

For all row j # 2, we have that:

1
o [ 0= il 00 = )| =5 |35 It =il o0l — )

And, for row 2, we have that, when o > 1:
1

[1%0(1) + v(0)]* > [(0.5)%0(1) + v(0) + (0.5)%v(1)]~.
Therefore, MDY (P') > MDY _(P"), contradicting SRD.

w,v,o [BRINeY
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