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Abstract

In this paper, we present an algorithm for Censored Quantile Regression (CQR) estimation
problems. Our method permits CQR estimation problems to be solved more efficiently and
reliably than was hitherto possible. It guarantees to find a high quality estimator in O(k×n²)
operations with k regressors and n observations, which is much less than the existing
algorithms for CQR problems.
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1 Introduction

It is well known that censoring poses serious problems for regression models, see Goldberger

(1983) and Honoré (1992), as the resulting estimators in general may not be consistent.

However, in the context of quantile regression, censoring can be handled under very weak

distributional assumptions. For the Censored Quantile Regression (CQR) model, Powell

(1986) obtained estimator consistency and asymptotic normality. However, although the

CQR model has many appealing theoretical features, its application has been hampered by

the computational complexity of standard methods in obtaining CQR estimators.

The CQR estimation problem is to minimize a non-convex and piecewise linear distance

function which may have multiple local optima. The optimal estimators occur at non-smooth

points. The feature of the distance function presents a challenge to the standard optimization

techniques which require the objective function to be convex and/or differentiable. Several

algorithms have been developed by modifying standard optimization algorithms, yet their

performance has not been satisfactory. An optimal estimator for a CQR problem is difficult to

obtain by modifying other existing algorithms, especially for large-scale problems in practice,

see Fitzenberger (1997).

Since the CQR model was introduced by Powell (1986), several algorithms have been

presented in the literature to deal with this problem. A detailed survey of the existing algo-

rithms and their performances may be found in Fitzenberger (1997) and Buchinsky (1994).

To name a few of the algorithms, they include a modified reduced-gradient algorithm by

Womersley (1986), an adaptation of the standard Barrodale-Roberts algorithm, see Barro-

dale and Roberts, (1973), for Quantile Regressions to the case of Censored Quantile Regres-

sions by Fitzenberger (1997), an interior point approach by Koenker and Park (1996), and

an iterative linear programming algorithm by Buchinsky (1994). Emulation algorithms (EA)

presented in Pinkse (1993) and Fitzenberger (1997) compute the exact CQR estimator by

checking every critical point. Some hybrid algorithms were proposed by Fitzenberger and

Winker (1999). However, these algorithms have run into difficulties in solving CQR esti-

mation problems, since they exhibit a high degree of complexity in their implementation.

Typically these algorithms achieve convergence to local minima, whereas obtaining a global

minimum requires a heavy computational load, something that renders their use in solving

real economic problems impractical. Among all these methods, only emulation algorithms

could be used to guarantee convergence.
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The purpose of this paper is to offer an alternative algorithm that simplifies the computa-

tions of the CQR estimation problem. The method presented in this paper uses a systematic

procedure to improve the reliability of the estimator, by using approximately O(k× n2) op-

erations for a CQR problem with n observations and k regressors. The algorithm is simple

to implement. The next section of the paper presents the CQR estimation problem. We

then proceed to present the algorithm and then offer some simulation results regarding its

relative performance when compared with the EA alternative.

2 The CQR estimation problem

The CQR estimation problem is to minimize a nonconvex and piecewise linear distance

function

min
nX
i=1

(θ ∗ I(di > 0) + (1− θ) ∗ I(di < 0)) |di| (1)

where di = yi −max (xiβ, cyi) , and I(x) is an indication function, such that

I(x) =

(
1 if x is true

0 otherwise.

Also θ ∈ (0, 1) is the quantile and yi is censored from below at cyi. The vector β is k× 1
dimensional. Other types of CQR can be easily transformed into the form of Equation (1).

We define Φ(β) as

Φ(β) =
nX
i=1

(θ ∗ I(di > 0) + (1− θ) ∗ I(di < 0)) |di| .

The distance function Φ(β) is piecewise linear, non-convex, and it has local minima, and

may not have a unique solution as illustrated in the following example. Consider the case
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The distance function is depicted below
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The distance function Φ(β)

The above figure shows that the distance function Φ(β) has a local minimum 5
8
at β = 3

4
.

It is flat when β ≤ 1
3
, and stays at the minimum of zero. From the above figure, we see

that the CQR distance function is not smooth at the critical points β = yi
xi
, and cyi

xi
, for

i = 1, · · · , n. Otherwise, Φ(β) is linear. The minimum of Φ(β) must occur at one of these

points.

3 A new algorithm for CQR estimation

As mentioned above CQR estimation deals with the minimization of a non-convex function.

Non-convex functions have been proven very difficult to minimize or maximize. However,

from the example above we notice that CQR estimation involves a particular type of non-

convexity. Given a direction and a starting point, the objective function for CQR estimation

is a piecewise linear function. It consists of at most 2n + 1 line-segments, or there are at

most 2n critical points (knots). This unique property guarantees that a local minimum could

occur only in 2n critical points or knots.

Based on the above observations, our method is designed to find the minimum point by

improving the value of the objective function at a given critical point with a smaller objective

function value at another critical point. In other words, the method offers a way of moving

from a given critical point to the next critical point with a smaller objective function value.

This process continues until no critical points with smaller objective function value can be

found.

More specifically, our algorithm starts with an initial critical point, and then we choose

a direction. Next, we check the 2n critical points for a given direction. We choose the

critical point with the smallest objective function value to be the new starting point. Then
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we choose another direction, and we repeat the process, until no new starting point can be

found.

4 Implementation of the algorithm

Since the minimum only occurs at critical points, this motivates us to design an algorithm to

improve the estimated β through critical points, such that Φ(βl+1) is less than Φ(βl). In other

words, given a starting value βl, we try to find βl+1, such that Φ(βl+1) is less than Φ(βl).

We proceed as follows. We first define βl+1 = βl + dj ∗ ej for j ∈ (1, k), where ej is a

k−dimensional vector with its jth element being one, the rest zero and dj is a step size.

We next have xiβl+1 = xi (βl + dj ∗ ej) . The potential critical points are those such that
xiβl+1 = yi for each i ∈ (1, n). That is xi (βl + dj ∗ ej) = yi, or xi,jdj = yi−xiβl. If xi,j is not
zero, then we have dj =

yi−xiβl
xi,j

.We proceed by computing Φ(βl+1).We define βl+1 = β
0

l+1 to

be that value that minimizes
©
Φ(βl+1)

ª
for all i ∈ (1, n) and j ∈ (1, k). If Φ(βl+1) turns out

to be less that Φ(βl), then a new βl+1 is found. We repeat the above process by replacing βl
by βl+1, until a minimum point is reached. The process will end in finite steps since there

is only a finite number of critical points. To find an improvement of βl involves two loops,

which need about O(k×n2) operations. The above critical point search algorithm is outlined

below1.

1. for a given βl.

2. for i = 1, · · · , n.

(a) for j = 1, · · · , k.
i. if xi,j is not zero, then

A. dj =
yi−xiβl
xi,j

.

B. compute Φ(βl + dj × ej).

C. if Φ(βl + dj × ej) < Φ(βl), then βl+1 = βl + dj × ej.

ii. end of “if” loop.

(b) end of loop for j

3. end of loop for i.

1The implementation of the above method is written in Gauss code and is available from the authors on
request.
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4. if βl+1 is found during the loop for i, then

(a) replace βl by βl+1.

(b) repeat steps 2 to 3.

5. otherwise the program terminates, a minimum is found.

5 Simulation Study

The timing of finding estimates of CQR problems is reported in Table 1. The method

presented in this paper is coded in Gauss, while the computer used to perform the simulations

is a Pentium 4 with 1.5 GHZ CPU. We also give the estimated times from using the EA of

Pinkse (1993) and Fitzenberger (1997), which is the only one among the standard methods

to guarantee convergence. We know that the EA methods checks

Ã
n

k

!
critical points.

The number of critical points checked by our method are reported in Table 2. Based on the

critical points checked, we can estimate the time that it would take the EA method to solve

the same CQR problems. To compare our method with the EA method, we compute the

time ratio of the EA and our method. We randomly generated 2000×20 uniform numbers in
the interval (−2.5, 2.5). The CQR problems are solved with (n = 500, 1000, 1500, 2000) and
(k = 2, 5, 10, 15, 20) . The variable y is censored below a number which is randomly generated

between (−1, 1). The dependent variable y is generated as follows:

y = max(x1 + · · ·+ xk + ε, cy).

Here, the distribution of ε is the Student’s t-distribution with 5 degrees of freedom. The

results are reported in Table 2. The total time unit is seconds.

From Table 2, we see that the timing ratio increases dramatically as k grows from 2 to

20 for given n. It is a very difficult task to find the optimal points by using the EA method

for k over 10 using standard computers. On the other hand our proposed method can solve

large scale CQR problems that appear in practice using only O(k×n2) operations, which is

a fraction of what is required by other existing methods.
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Table 1: The timing results for the method presented in this paper.
Our Method

n k Time (Seconds)
500 2 4.98E+01
500 5 7.13E+02
500 10 1.67E+04
500 15 1.43E+04
500 20 3.18E+04
1000 2 5.19E+01
1000 5 1.68E+04
1000 10 2.55E+04
1000 15 1.38E+07
1000 20 3.00E+08
1500 2 2.63E+03
1500 5 2.05E+04
1500 10 3.46E+08
1500 15 7.81E+08
1500 20 1.13E+09
2000 2 3.28E+03
2000 5 1.64E+04
2000 10 6.66E+08
2000 15 2.67E+09
2000 20 1.83E+09
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Table 2: The comparison of timings between our method and EA method. NCPC denotes
the number of critical points checked.

Our Method EA Method Time ratio of
n k NCPC NCPC EA over ours

500 2 105000 124750 1.19E+00
500 5 125000 2.55245E+11 2.04E+06
500 10 780000 2.45811E+20 3.15E+14
500 15 3427500 1.88779E+28 5.51E+21
500 20 3120000 2.6672E+35 8.55E+28
1000 2 58000 499500 8.61E+00
1000 5 375000 8.25029E+12 2.20E+07
1000 10 2330000 2.6341E+23 1.13E+17
1000 15 5715000 6.88141E+32 1.20E+26
1000 20 19860000 3.39483E+41 1.71E+34
1500 2 78000 1124250 1.44E+01
1500 5 412500 6.28604E+13 1.52E+08
1500 10 5730000 1.54203E+25 2.69E+18
1500 15 9675000 3.12155E+35 3.23E+28
1500 20 12420000 1.20351E+45 9.69E+37
2000 2 112000 1999000 1.78E+01
2000 5 800000 2.65336E+14 3.32E+08
2000 10 6280000 2.75899E+26 4.39E+19
2000 15 10590000 2.37736E+37 2.24E+30
2000 20 12560000 3.91816E+47 3.12E+40
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