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Abstract

Montañés, Olloqui, and Calvo (2005, Journal of Econometrics) argue that use of the
Perron-type minimum t-statistics will lead the practitioner to incorrectly assess the time
series properties of the variable under investigation when the form of break is misspecified.
However, their simulations do not provide insight into the distribution of the estimated
break-date implied by the unknown break-date Perron-type statistics when the form of break
is misspecified. Using finite sample simulations, we show that the break-date implied by the
Mixed model will tend to estimate the break-date consistently even when the form of break is
misspecified. The practitioner should, therefore, use the Mixed model as the appropriate
trend-break stationary alternative when testing for a unit root with an endogenous break-date.
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1. Introduction 
 
 It has been long recognized that conventional unit root tests, such as the Dickey and 
Fuller (1979) t-statistic and the normalized estimator, fail to reject the null hypothesis if the true 
data generating process evolves according to a trend-break stationary process. The behaviour of 
the Dickey-Fuller statistics under the trend-break stationary alternative was originally studied 
by Perron (1989).1  According to Perron, visual inspection of several U.S. macroeconomic time 
series revealed a break in the trend component during the Great Crash of 1929 or the Oil Price 
Shock of 1973.  Perron (1989) suggested three different characterizations of the break or `form 
of break' under the alternative, namely, (a) the Crash model that allows for a break in the 
intercept alone, (b) the Changing Growth model that allows for a break in the slope with the 
two segments joined at the break-date, and (c) the Mixed model that allows for a simultaneous 
break in the intercept and slope.2  Perron (1989) devised unit root statistics that have power 
against the trend-break stationary alternative of choice when the location of break or break-date 
is assumed to be known a priori. In order to implement Perron's (1989) methodology, the 
practitioner estimates a regression that nests the unit root null and the alternative of choice.  
The unit root statistic is the t-statistic on the first lag of the dependent variable, denoted by 

)( c
b

i
DF Tt , where c

bT  is the correct break-date, and i=A, B, C corresponds to the Crash model, 
the Changing Growth model, and the Mixed model respectively.  We note that the limiting null 
distribution of )( c

b
i
DF Tt  (i=A, B, C) is indexed by the location of break and the form of break. 

 An aspect of Perron's (1989) methodology that has drawn criticism pertains to the pre-
specification of the break-date.  As pointed out by Christiano (1992), the choice of the break-
date is invariably correlated with the data and this `pretest examination of data' is not accounted 
for in Perron's (1989) testing procedure.  As a consequence, the unit root statistics )( c

b
i
DF Tt  

(i=A, B, C) will reject the null hypothesis far too often.  Several studies have extended Perron's 
(1989) methodology to allow for an unknown break-date.  See, for example, Perron and 
Vogelsang (1992), Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992), Perron 
(1997), and Vogelsang and Perron (1998).  These studies suggest some variant of a minimum t-
statistic.  The minimum t-statistics are based on the sequence of t-statistics ( Λ∈λλ ])}([{ Tt i

DF , 
i=A, B, C) obtained by implementing Perron's (1989) methodology for each possible break-
date ][ Tλ  that corresponds to a break-fraction λ  in a suitably defined choice set 

)1,0(]1,[ 00 ⊂−=Λ λλ , where [.] is the smallest integer function.  The minimum t-statistic is then 
constructed by choosing the t-statistic from Λ∈λλ ])}([{ Tt i

DF , based on some algorithm, that 
maximizes evidence against the unit root null.  For example, one may use the minimum of the 
sequence of t-statistics, denoted by )(min itDF , i=A, B, C.  In the eventuality that the unit root null 

                                                 
1 Details on the asymptotic behaviour of the Dickey-Fuller statistics can be found in Perron (1989) and Montañés 
and Reyes (1998, 1999).  Details on the asymptotic behaviour of the Dickey-Fuller statistics can be found in 
Perron (1989) and Montañés and Reyes (1998, 1999). 
2 Specifically, Perron (1989) examined the Nelson and Plosser (1982) macroeconomic series and U.S. Postwar 
Quarterly Real GNP.  Perron (1989) found the Changing Growth model suitable for Quarterly U.S. Real GNP, the 
Mixed model suitable for Common Stock Prices and Real Wages series, and the Crash model suitable for the 
remaining Nelson-Plosser (1982) series. 
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is rejected in favour of the chosen trend-break stationary alternative, one can obtain an estimate 
of the break-date as )(minarg))((ˆ min

b
i
DFTDFb TtitT

b
= , for i=A, B, C. 

Sen (2003) argues that when the break-date is assumed to be unknown, the practitioner 
should specify the form of break according to the most general Mixed model.  Sen (2003) 
presents simulation evidence pertaining to the minimum t-statistics )(min itDF , i=A,B,C that 
correspond to the unknown break-date), and finds that: (a) the power of the Crash (Changing 
Growth) model statistics is low and can be close to zero if the break occurs according to the 
Changing Growth (Crash) model or the Mixed model; and (b) there is not much loss in power if 
the Mixed model is used, when in fact the break occurs according to either the Crash model or 
the Changing Growth model.  Therefore, Sen (2003) suggests that the practitioner should use 
the Mixed model as the appropriate trend-break stationary alternative so as to guard against 
possible misspecification of the form of break. 

In a recent paper, Montañés, Olloqui, and Calvo (2005) argue that use of the minimum 
t-statistics will lead the practitioner to incorrectly assess the time series properties of the 
variable under investigation when the form of break is misspecified.  They derive the limiting 
behaviour of Perron's (1989) t-statistics for both the correct break-date and incorrect break-
dates when the form of break is misspecified, see their Propositions 1 and 2.  Using finite 
sample simulations, they assess the power of the Perron (1989) statistics ( )( b

i
DF Tt , i=A, B, C 

that correspond to a known break-date) evaluated at the true break-date ( c
bT ) and at several 

incorrect break-dates ( c
bb TT ≠ ), see their Tables 1 and 2.  The simulation evidence shows that: 

(a) if the correct break-date is used, the Crash (Changing Growth) model statistic suffers from 
severe power loss if the break occurs according to the Changing Growth (Crash) model, but  
the Mixed model statistic has high power; and (b) if the incorrect break-date is used, both the 
Crash (Changing Growth) model and the Mixed model statistics will suffer serious power loss 
when the break occurs according to the Changing Growth (Crash) model.  While the analytical 
results of Montañés, Olloqui, and Calvo (2005) imply that the minimum t-statistics will yield 
an inconsistent break-date estimator, their simulations do not provide insight into distribution 
of the estimated break-date implied by the minimum t-statistics under model misspecification. 

In this paper, we study the effect of misspecification in the form of break on the 
distribution of the estimated break-date implied by the minimum t-statistics using finite sample 
simulations.  We also consider the maximum F-statistic of Murray and Zivot (1998).  Our 
results show that: (a) the estimated break-date implied by the Crash (Changing Growth) model 
statistic fails to identify the correct location of break when the true data generating process 
evolves according to the Changing Growth (Crash) model or the Mixed model; and (b) the 
estimated break-date from the Mixed model identifies the true break-date fairly accurately, 
even when the break occurs according to either the Crash model or the Changing Growth 
model.  The latter result implies that the use of the Mixed model will reveal valuable 
information by accurately identifying the correct break-date, and also guard against power 
distortions owing to misspecification in the form of break.  Our results regarding the estimated 
break-date, therefore, complement the analysis of both Montañés, Olloqui, and Calvo (2005) 
and Sen (2003). 
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This paper is laid out as follows.  In Section 2, we briefly describe the unit root null and 
the trend-break stationary alternative hypotheses, the minimum t-statistic statistics, and the 
maximum F-statistic.  In Section 3, we present simulation evidence regarding the distribution 
of the estimated break-date implied by the unit root statistics under model misspecification.  
Some concluding comments appear in Section 4. 

 
 

2. Tests for the Unit Root Null Hypothesis 
 
In this section, we describe the data generating process under the null hypothesis and 

the trend-break stationary alternative, the minimum t-statistics proposed by Zivot and Andrews 
(1992), and the maximum F-statistic of Murray and Zivot (1998).  Our discussion follows the 
analysis in Zivot and Andrews (1992).  Consider the time series { }T

tty 1=  where T is the available 
sample size.  In this paper, we consider the Innovation Outlier (IO) model in which the change 
in the trend function evolves in the same manner as any other shock, see section 4.2 in Perron 
(1989) for further details.  The data generating process under the Crash model, the Changing 
Growth model, and the Mixed model are respectively given by: 

 
Model (A): ])([)( 120 t

c
btt TDULty νμψμμ +++=  (1) 

 
Model (B): ])([)( 320 t

c
btt TDTLty νμψμμ +++=  (2) 

 
Model (C): ])()([)( 3120 t

e
bt

c
btt TDTTDULty νμμψμμ ++++=  (3) 

 
where )()()( 1 LBLAL −=ψ , tt LBeLA ν)()( = , and tν  is a sequence of i.i.d. ),0( 2σ  random 
variables, A(L) and B(L) are polynomials in the lag operator of order p and q respectively with 
all roots outside the unit circle. c

bT  is the correct location of the break (or break-date), 
)(1)( c

b
c

bt TtTDU >=  is an intercept break dummy, )(1 c
bTt >  is an indicator function that takes 

on the value 0 if c
bTt ≤  and 1 if c

bTt > , and )(1)()( c
b

c
b

c
bt TtTtTDT >−=  is a slope break dummy. 

For the asymptotic results, we assume that the break-date is a constant fraction of the sample 
size, that is, ][ TT cc

b λ=  for some )1,0(∈cλ  where [.] is the smallest integer function. Model (A) 
is referred to as the Crash model as it allows for a break in the intercept alone, Model (B) is 
referred to as the Changing Growth model since it allows for a break in the slope with the two 
segments joined at the break-date, and Model (C) is referred to as the Mixed model as it allows 
for a simultaneous break in the intercept and the slope of the trend function. 

Under the null hypothesis, the data generating process contains a unit root, that is: 
 

 ttt Lyy νψμ )(1 ++= −  (4) 
 

where )()()( 1 LBLAL −=ψ , )()1()( * LALA α−= , and 1=α .  In order to test the unit root null 
against the alternatives specified in (1)-(3) when the location of break is not known, the 
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following methodology has been prescribed by Zivot and Andrews (1992).  Specify the interval 
)1,0(]1,[ 00 ⊂−=Λ λλ  that is believed to contain the true break-fraction.  For each possible Λ∈λ , 

estimate the following regression that nests the null and the appropriate alternative: 
 
 ∑

=
−− +Δ++++=

k

j

A
tjt

A
jt

AA
bt

AA
t eycytTDUy

1
1210 ˆˆˆ)(ˆˆ αμμμ  (5) 

 
 ∑

=
−− +Δ++++=

k

j

B
tjt

B
jt

B
bt

BBB
t eycyTDTty

1
1320 ˆˆ)(ˆˆˆ αμμμ  (6) 

 
 ∑

=
−− +Δ+++++=

k

j

C
tjt

C
jt

C
bt

CC
bt

CC
t eycyTDTtTDUy

1
13210 ˆˆ)(ˆˆ)(ˆˆ αμμμμ  (7) 

 
where [.] is the smallest integer function.  The `k' regressors { }k

jjty
1=−Δ  in (5)-(7) are included in 

the regression to account for additional correlation in the time series.  In practice, the value of 
the lag-truncation parameter (k) is unknown, and so we use the data-dependent method of 
Perron and Vogelsang (1992) for choosing the appropriate value of k is used, see discussion 
below. Based on the estimated regressions (5)-(7) for the break-dates 

]}[,...,1][],{[ 000 TTTT λλλ −+ , we calculate the sequence of t-statistics for 1:0 =αH , denoted 
by  { } ][

][
0

0
)( TT

TTb
i
DF b

Tt λ

λ

−

=  (i=A, B, C).  This sequence of t-statistics can be used to obtain numerous 
minimum t-statistics by specifying a suitable algorithm to choose an appropriate break-date. 
We consider the algorithm proposed by Perron and Vogelsang (1992) and Zivot and Andrews 
(1992). The statistic is obtained by choosing the break-date that maximizes evidence against the 
unit root null, that is: 

 
 )()( ]}[,...,1][],{[

min
000 b

i
DFTTTTTDF TtMinit

b λλλ −+∈=  (8) 
 

for i=A, B, C. In the eventuality that the unit root null is rejected in favour of the chosen trend-
break stationary alternative, one can obtain an estimate of the break-date as 

)(minarg))((ˆ min
b

i
DFTDFb TtitT

b
= , for i=A, B, C. 

 For the Mixed model, we also consider a version of the supWald statistic proposed by 
Murray and Zivot (1998) for the joint null hypothesis of a unit root and no break in the 
intercept and slope of the trend function, that is, 0,0,1: 310 === μμαJH .  We consider the 
maximum F-statistic characterization of the supWald statistic described in Sen (2003).  In order 
to calculate the maximum F-statistic ( max

TF ), we estimate regression (7) for all possible break-
dates ]}[,...,1][],{[ 000 TTTTTb λλλ −+∈ , and calculate the Wald statistic for JH 0 .  Using the 
sequence { } ][

][
0

0
)( TT

TTbT b
TF λ

λ
−
= , the maximum F-statistic is defined as: 

 
 )(]}[,...,1][],{[

max
000 bTTTTTTT TFMaxF

b λλλ −+∈=  (9) 
 
If the unit root null is rejected, we can estimate the break-date as 

)(maxarg)(ˆ max
bTTTb TFFT

b
= . The asymptotic distribution of max

TF  can be obtained easily using 
the results in Murray and Zivot (1998).  Murray and Zivot (1998) present the asymptotic 
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critical values for max
TF  without any trimming of the sample. The asymptotic and finite sample 

critical values for max
TF  for λ ={0.15, 0.10, 0.05} are reported in Table 1 in Sen (2003). 

 
 

3. Estimated Break-Date When the Form of Break is Misspecified 
 
In this section, we consider the effect of misspecification in the form of break on the 

estimated break-date implied by the unit root statistics )(min itDF  for i=A, B, C, and max
TF .  We 

generate data according to the following simulation design: 
 

 tt
c

t
c
tt eyDTDUy +++= −131 αμμ  (10) 

 
where 00 =y , te  are i.i.d. N(0,1), )(1 c

b
c
t TtDU >= , )(1)( c

b
c

b
c

t TtTtDT >−= , T={50, 100}, 
][ TT cc

b λ=  implied by cλ = {0.25, 0.5, 0.75}, }9.0,8.0{=α , 1μ ={0, 1, 2, 3, 4, -1, -2, -3, -4}, 
and 3μ ={0, 0.1, 0.2, 0.3, -0.1, -0.2, -0.3}.  The break occurs according to the Crash model 
when 01 ≠μ  and 03 =μ , according to the Changing Growth model when 01 =μ  and 03 ≠μ , 
and according to the Mixed model when 01 ≠μ  and 03 ≠μ .  We consider all parameter 
combination that result from the specified values of 1μ  and 3μ .  We use 10,000 replications for 
each parameter combination.  We estimate regressions (5)-(7), and calculate )(min itDF  $ (i=A, B, 
C) and max

TF  with 0λ =0.15.  For each statistic, we recorded the estimated break-dates, denoted 
by ))((ˆ min itT DFb  for i=A, B, C, and )(ˆ max

Tb FT .  We used Perron and Vogelsang’s (1992) method 
to determine the lag truncation parameter. 

In what follows, we discuss the results regarding the distribution of the estimated break-
dates implied by the unit root statistics ))((ˆ min itT DFb , i=A, B, C and )(ˆ max

Tb FT  when the form of 
break under the alternative is misspecified.  In order to save space, we only report the results 
for the parameter combinations corresponding to T=100, 5.0=cτ , 8.0=α , 01 ≤μ , and 03 ≥μ .  
However, the main conclusions discussed below are representative of the results based on all 
parameter combinations considered in our simulations.3 
 Figures 1-8 show the distribution of the estimated break-dates ))((ˆ min itT DFb  for i=A, B, C, 
and )(ˆ max

Tb FT  when the break evolves according to the Crash model with 01 <μ  and 03 =μ .  
The Crash model statistic )(min AtDF  estimates the true break-date most accurately (Figures 1 and 
5).  The distribution of ))((ˆ min AtT DFb  converges to the true break-date as the intercept-break 
magnitude increases.  The Changing Growth model statistic )(min BtDF  fails to identify the true 
break-date in most cases (Figures 2, 6).  The distribution of the estimated break-date 

))((ˆ min BtT DFb  diverges away from the true break-date as the intercept break magnitude increases.  
However, the Mixed model statistics )(min CtDF  and max

TF  identify the break-date accurately 
(Figures 3 and 7, and Figures 4 and 8 respectively), and the distribution of the estimated break-
dates ))((ˆ min CtT DFb  and )(ˆ max

Tb FT  converge to the true break-date as the intercept-break 
magnitude increases. 

                                                 
3 A copy of the results for the distribution of the estimated break-dates corresponding to all parameter 
combinations is available from the author upon request. 
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 In Figures 9-20, we plot the distribution of the estimated break-dates ))((ˆ min itT DFb  for 
i=A, B, C, and )(ˆ max

Tb FT  when the break evolves according to the Changing Growth model 
with 01 =μ  and 03 >μ .  In this case, we find that the Changing Growth model statistic )(min BtDF  
estimates the break-date most accurately (Figures 10, 14, and 18), but the Crash model statistic 

)(min AtDF  fails to identify the true break-date in most cases (Figures 9, 13, and 17).  The Mixed 
model statistics )(min CtDF  and max

TF , however, do a reasonably good job in identifying the true 
break-date (Figures 11, 15, and 19, and Figures 12, 16, and 20 respectively).  As the slope-
break magnitude increases, the accuracy with which the Changing Growth model and Mixed 
model statistics identify the correct break-date increases, but the estimated break-dates implied 
by the Crash model statistics diverges away from the true break-date. 
 Figures 21-32 show the distribution of the estimated break-dates ))((ˆ min itT DFb  for i=A, B, 
C, and )(ˆ max

Tb FT  when the break evolves according to the Mixed model with 01 <μ  and 
03 >μ .  In each case, we find that the Mixed model statistics identify the correct break-date 

most accurately, and the accuracy with which ))((ˆ min CtT DFb  and )(ˆ max
Tb FT  estimate the true 

break-date increases with the size of both the intercept-break and slope-break.  
 While the distribution of the estimated break-date implied by the Crash model statistic 
( ))((ˆ min AtT DFb ) converges towards the true break-date as the intercept-break magnitude increases, 
it diverges away from the true break-date as the slope-break magnitude increases.  For example, 
when the intercept-break magnitude is 1μ = -1 and the slope-break magnitude increases from 

3μ = 0.1 to 0.3 (Figures 21 and 29), the distribution of ))((ˆ min AtT DFb  diverges away from the true 
break-date.  The distribution of the estimated break-date implied by )(min BtDF  with a fixed 
intercept-break magnitude converges toward the true break-date as the slope-break magnitude 
increases.  For example, with 1μ = -1, the distribution of ))((ˆ min BtT DFb  gets closer to the middle 
of the sample as the slope-break magnitude increases from 0.1 to 0.3 (Figures 22 and 30).  As 
expected, this convergence is slower for large 1μ .  For a fixed slope-break magnitude, the 
distribution of the estimated break-date ))((ˆ min BtT DFb  diverges away from the true break-date as 
the intercept-break magnitude increases (for example, Figures 22 and 26 show the distribution 
of ))((ˆ min BtT DFb  when 3μ = 0.1 and 1μ  increases from -1 to -2).  It is interesting, however, to 
note that ))((ˆ min BtT DFb  tends to be in first half of the sample when the intercept-break and the 
slope-break have the same sign, but ))((ˆ min BtT DFb  tends to be in second half of the sample when 
the intercept-break and the slope-break have opposite signs. 

The results pertaining to the distribution of the estimated break-dates from the Crash 
and Changing Growth models ( ))((ˆ min itT DFb , i=A, B) illustrate how misspecification in the form 
of break may lead to erroneous identification of the break-date.  This result is consistent with 
the findings of Montañés, Olloqui, and Calvo (2005).  However, the simulation evidence of 
Montañés, Olloqui, and Calvo (2005) does not clearly show that the estimated break-date 
implied by the Mixed model statistic ( ))((ˆ min CtT DFb ) identifies the true break-date in most cases.  
Therefore, the practitioner should use the Mixed model statistics when the form of break is 
unknown. 

 
 



 6

4. Conclusion 
 

In this paper, we consider a methodological issue concerning unit root tests designed to 
have power against the trend-break stationary alternative.  Montañés, Olloqui, and Calvo 
(2005) show that the Perron-type statistics will yield an inconsistent break-date estimator when 
the form of break is misspecified.  However, their simulations do not provide insight into 
distribution of the estimated break-date implied by the minimum t-statistics under model 
misspecification.  Using finite sample simulations, we draw two main conclusions regarding 
the distribution of the estimated break-date implied by the minimum t-statistics.  First, the 
Crash (Changing Growth) model statistics fail to identify the true break-date when the break 
evolves according to the Changing Growth (Crash) or the Mixed model.  Second, the Mixed 
model statistics identify the true break-date accurately when the form of break occurs according 
to the Crash or Changing Growth model.  Therefore, our results provide further justification for 
using the Mixed model as the appropriate trend-break stationary alternative when the form of 
break in unknown. 
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