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Abstract

In this note, we derive the finite sample bias of the modified ordinary least squares (MOLS)
estimator, which was suggested by Wansbeek and Knaap (1999) and reconsidered by
Hayakawa (2006a,b). From the formula for the finite sample bias, we find that the bias of the
MOLS estimator becomes small as $\rho$, the autoregressive parameter, approaches unity.
Simulation results indicate that the MOLS estimator has very small bias and that its empirical
size is close to the nominal one.
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1 Introduction

In the context of a pure time series AR(1) model, it is well known that the bias of the

ordinary least squares (OLS) estimator is not negligible when T , the sample size of a time

series, is not large. Early contributions to this small sample bias problem include Orcutt

(1948), Hurvicz (1950), Marriott and Pope (1954), and Kendall (1954), and more recent

contributions include Phillips (1977), Tanaka (1983), and Shaman and Stine (1988). Their

major finding is that the bias of the OLS estimator becomes large when T is small and ρ,

an autoregressive parameter, is close to one.

In recent years, several papers have appeared that deal with the estimation and inference

of a panel AR(1) model with short time series. 1 One of them includes the modified OLS

(MOLS) estimator by Wansbeek and Knaap (1999) and Hayakawa (2006a,b). The major

finding of these papers is that the MOLS estimator has very small bias even when T is not

so large, and ρ is close to one.

Phillips and Han (2006) consider the same estimator as the MOLS estimator in the

context of a time series AR(1) model. They showed by simulations that the MOLS estimator

has a very small bias. In this note, we derive the finite sample bias of the MOLS estimator

in the context of time series AR(1) models, and show the reason why the MOLS estimator

has a small bias when T is not large and ρ is close to unity. This result helps to explain

theoretically why the MOLS estimator has small bias in the estimation of dynamic panel

data models with cross-section dependence (Hayakawa, 2006b), and in the estimation of time

series AR(1) models (Phillips and Han, 2006).

The remainder of this note is organized as follows. In Section 2, we provide the setup and

main results of this note. In Section 3, we compare the performance of the MOLS estimator

and alternative estimators by a Monte Carlo simulation. Finally, Section 4 concludes.

1For a recent review, see Arellano (2003).



2 Setup and Main Results

We consider an AR(1) model given by

yt = μ + ρyt−1 + +ut t = 1, ..., T (1)

where ρ is the parameter of interest with |ρ| < 1. We assume that ut ∼ iidN(0, σ2), and

y0 = μ/(1 − ρ) +
∑∞

j=0 ρju−j.

By first-differencing model (1), we have

Δyt = ρΔyt−1 + Δut t = 2, ..., T. (2)

The OLS estimator of this model is given by

ρ̂fdols =
T−1

0

∑T
t=2 Δyt−1Δyt

T−1
0

∑T
t=2 Δy2

t−1

=
X

Y
(3)

where T0 = T − 1.

The MOLS estimator suggested by Wansbeek and Knaap (1999) and reconsidered by

Hayakawa (2006a,b) takes the following form:

ρ̂mols = 2ρ̂fdols + 1. (4)

It is easy to show that plimT→∞ ρ̂fdols = (ρ − 1)/2, and plimT→∞ ρ̂mols = ρ.

The following theorem gives the formulas of the finite sample biases of ρ̂fdols and ρ̂mols.

Theorem 1. The expectations of ρ̂fdols, and ρ̂mols up to O(T−1) are given by

E(ρ̂fdols) =
ρ − 1

2

[
1 − 1

T − 1

]
+ o(T−1) (5)

E(ρ̂mols) = ρ +
1 − ρ

T − 1
+ o(T−1). (6)

The proof is given in the appendix.

Remark 1 We find that as ρ approaches unity, the finite sample bias of ρ̂mols becomes

small. This is in contrast to the usual OLS estimator whose bias increases as ρ approaches

unity.2 Figure 1 depicts the bias of ρ̂ols and ρ̂mols for the case of T = 25. From this figure,

we find that the bias of ρ̂mols is much smaller than that of ρ̂ols, and tends to be small as ρ

approaches one. This supports the simulation results of Phillips and Han (2006).

2The form of the finite sample bias of the OLS estimator in (1), ρ̂ols, is given by E(ρ̂ols)−ρ = −(1+3ρ)/T .

See Marriott and Pope (1954) and Tanaka (1983).
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Remark 2 This result explains the reason why the bias of the MOLS estimator in the

estimation of dynamic panel data models with cross-section dependence is small when T is

not so large and ρ is close to one. For a detailed discussion, see Hayakawa (2006b).

3 Monte Carlo Simulation

In this section, we compare the performance of the MOLS estimator with those of the OLS

estimator and the recursive mean adjusting (RMA) estimator by So and Shin (1999), in

terms of the bias and inference.3 Observations are simulated from yt = 1 + ρyt−1 + ut with

ut ∼ iidN(0, 1) and y1 ∼ iidN(1/(1 − ρ), 1/(1 − ρ2)). We set T = 15, 20, 25, 50, 100, 200,

and ρ = 0.5, 0.9, 0.95. The number of replications is 100,000. We computed ρ̂ols, ρ̂mols, the

recursive mean adjusting estimator, ρ̂rma, and bias-corrected versions of ρ̂ols, ρ̂mols,

ρ̃ols =
T ρ̂ols + 1

T − 3
(7)

ρ̃mols =
(T − 1)ρ̂mols − 1

T − 2
. (8)

It is easy to verify that E(ρ̃ols) = E(ρ̃mols) = ρ + o(T−1). ρ̃ols, and ρ̃mols are useful in

bias reduction when we are just interested in the estimation of AR(1) models. However, in

some cases, they are not. For example, ρ̂ols and ρ̂mols appear implicitly in the estimators of

dynamic panel data models with cross-section dependence. From Proposition 3 in Phillips

and Sul (2006), we find that ρ̂ols appears implicitly in the probability limit of the least

squares dummy variables estimator. In this case, we cannot use ρ̃ols. Similarly, as shown in

Hayakawa (2006b), ρ̂mols appears implicitly in the MOLS estimator of dynamic panel data

models with cross-section dependence. Thus, in these cases, we cannot use ρ̃ols or ρ̃mols.

The simulation results are summarized in Table 1. We computed mean (mean), the

root mean squared error (RMSE) and the empirical size of t-test for H0 : ρ = ρ0 with 5%

significance.

When we compare ρ̂ols, ρ̂mols, and ρ̂rma, we find that ρ̂mols and ρ̂rma have almost the

same bias in the case of ρ = 0.5. However, when ρ = 0.9, 0.95, the bias of ρ̂mols is smallest

3Sul, Phillips, and Choi (2005, p.540–542) gives an intuitive reason why the RMA estimator has smaller

bias than the OLS estimator.
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among the three estimators, especially when T is not so large. With regard to inference, the

empirical size of ρ̂mols is very close to the nominal one in all cases, although those of ρ̂ols and

ρ̂rma are not so close in the case of small T . One drawback of ρ̂mols is its variability. Since

the variance of ρ̂mols is four times as large as that of ρ̂fdols, in terms of the RMSE, ρ̂mols does

not perform best. In other words, at a cost of efficiency, ρ̂mols gains precision with regard to

the bias.

When we compare all five estimators, we find that the bias of ρ̃mols is smallest in almost all

the cases, although both ρ̃mols and ρ̃ols are unbiased up to O(T−1). It might be conjectured

that this is because the third-order bias of ρ̂ols is not negligible when ρ is close to one. In

terms of inference, the empirical sizes of ρ̂mols and ρ̃mols are close to the nominal one in

almost all cases, although those of other estimators are not, especially when T is small.

With regard to the RMSE, the RMSE of ρ̃mols is largest among the five estimators, although

its bias is smallest. Hence, as in the above case, ρ̃mols has very a small bias at a cost of

efficiency.

4 Conclusion

In this paper, we derived the finite sample bias of the modified OLS estimator in the context

of a time series AR(1) model. From the formula of the finite sample bias, we found that as ρ

approaches unity, the bias becomes small, unlike the usual OLS estimator. This supported

the simulation results of Phillips and Han (2006) theoretically. This result was also useful in

explaining why the MOLS estimator performs well in the estimation of dynamic panel data

models with cross-section dependence even if T is not so large. Simulation results showed

that although the RMSE of the MOLS estimator is larger than those of other alternative

estimators, in terms of the bias and inference, the MOLS estimator performs best.
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A Appendix

Proof of Theorem 1 We follow Marriott and Pope (1954). Note that E(X/Y ) can be

expanded up to O(T−1) as follows:4

E

(
X

Y

)
=

E(X)

E(Y )

[
1 − cov(X,Y )

E(X)E(Y )
+

var(Y )

[E(Y )]2

]
+ o(T−1). (9)

To derive the finite sample bias, we need to obtain E(Y 2) and E(XY ):

E(Y 2) =
1

T 2
0

E

⎡
⎣
(

T∑
t=2

y2
t−1

)2

+

(
T∑

t=2

y2
t−2

)2

+ 4

(
T∑

t=2

yt−2yt−1

)2

+2

(
T∑

t=2

y2
t−2

)(
T∑

t=2

y2
t−1

)
+ −4

(
T∑

t=2

y2
t−2

)(
T∑

t=2

yt−2yt−1

)

+ − 4

(
T∑

t=2

y2
t−1

)(
T∑

t=2

yt−2yt−1

)]

= A1 + A2 + 4A3 + 2A4 − 4A5 − 4A6

E(XY ) =
1

T 2
0

E

⎡
⎣
(

T∑
t=2

y2
t−1

)(
T∑

t=2

yt−1yt

)
−
(

T∑
t=2

y2
t−1

)2

−
(

T∑
t=2

y2
t−1

)(
T∑

t=2

yt−2yt

)

+

(
T∑

t=2

y2
t−1

)(
T∑

t=2

yt−2yt−1

)
−
(

T∑
t=2

y2
t−2

)(
T∑

t=2

yt−1yt

)

4See, for example, Mood, Graybill and Boes (1974, p.181).
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−
(

T∑
t=2

y2
t−2

)(
T∑

t=2

y2
t−1

)
+

(
T∑

t=2

y2
t−2

)(
T∑

t=2

yt−2yt

)

−2

(
T∑

t=2

y2
t−2

)(
T∑

t=2

yt−2yt−1

)
+ 2

(
T∑

t=2

yt−2yt−1

)(
T∑

t=2

yt−1yt

)

+2

(
T∑

t=2

yt−2yt−1

)(
T∑

t=2

y2
t−1

)
+ 2

(
T∑

t=2

yt−2yt−1

)(
T∑

t=2

yt−2yt

)

−2

(
T∑

t=2

yt−2yt−1

)2
⎤
⎦

= B1 − B2 − B3 + B4 − B5 − B6 + B7 − 2B8 + 2B9 + 2B10 + 2B11 − 2B12

To calculate the expectations, we use the following result:5

E(ytyt+kyt+k+lyt+k+l+m) = rρk+m(1 + 2ρ2l) k, l,m ≥ 0 (10)

where r = σ4/(1 − ρ2)2. Using (10), we have

A1 = A2 = A4 = B2 = B6 = r +
2r

T0

(
1 + ρ2

1 − ρ2

)

A3 = B9 = B12 = ρ2r +
1

T0

(
4ρ2r

1 − ρ2
+ (1 + ρ2)r

)

A5 = A6 = B1 = B4 = B5 = B8 = B10 = ρr +
1

T0

(
4ρr

1 − ρ2

)

B3 = B7 = ρ2r +
2ρ2r

T0

(
1 +

2

1 − ρ2

)

B11 = ρ3r +
2ρr

T0

(
(1 + ρ2) +

2ρ2

1 − ρ2

)
.

From these results, we have

E(Y 2) = 4r

[
(1 − ρ2) +

1

T0

(1 − ρ)2(ρ + 3)

1 + ρ

]
(11)

E(XY ) = 2r

[
(ρ − 1)3 +

−2

T0

(
(ρ − 1)4(ρ + 2)

1 − ρ2

)]
(12)

var(Y ) =
4r

T0

(1 − ρ)2(ρ + 3)

1 + ρ
(13)

cov(X,Y ) =
−4r

T0

(
(ρ − 1)4(ρ + 2)

1 − ρ2

)
. (14)

5See Marriott and Pope (1954), and Brockwell and Davis (1991, p.226–227).
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Therefore, it follows that

E(ρ̂fdols) = E

(
X

Y

)
=

ρ − 1

2

[
1 − 1

T − 1

]
+ o(T−1). (15)

E(ρ̂mols) is also straightforwardly derived from (15).
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