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Abstract

In this note, we derive the finite sample bias of the modified ordinary least squares (MOLS)
estimator, which was suggested by Wansbeek and Knaap (1999) and reconsidered by
Hayakawa (2006a,b). From the formula for the finite sample bias, we find that the bias of the
MOLS estimator becomes small as $\rho$, the autoregressive parameter, approaches unity.
Simulation results indicate that the MOLS estimator has very small bias and that its empirical
size is close to the nominal one.
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1 Introduction

In the context of a pure time series AR(1) model, it is well known that the bias of the
ordinary least squares (OLS) estimator is not negligible when 7', the sample size of a time
series, is not large. Early contributions to this small sample bias problem include Orcutt
(1948), Hurvicz (1950), Marriott and Pope (1954), and Kendall (1954), and more recent
contributions include Phillips (1977), Tanaka (1983), and Shaman and Stine (1988). Their
major finding is that the bias of the OLS estimator becomes large when 7" is small and p,
an autoregressive parameter, is close to one.

In recent years, several papers have appeared that deal with the estimation and inference
of a panel AR(1) model with short time series. ' One of them includes the modified OLS
(MOLS) estimator by Wansbeek and Knaap (1999) and Hayakawa (2006a,b). The major
finding of these papers is that the MOLS estimator has very small bias even when 7' is not
so large, and p is close to one.

Phillips and Han (2006) consider the same estimator as the MOLS estimator in the
context of a time series AR(1) model. They showed by simulations that the MOLS estimator
has a very small bias. In this note, we derive the finite sample bias of the MOLS estimator
in the context of time series AR(1) models, and show the reason why the MOLS estimator
has a small bias when T is not large and p is close to unity. This result helps to explain
theoretically why the MOLS estimator has small bias in the estimation of dynamic panel
data models with cross-section dependence (Hayakawa, 2006b), and in the estimation of time
series AR(1) models (Phillips and Han, 2006).

The remainder of this note is organized as follows. In Section 2, we provide the setup and
main results of this note. In Section 3, we compare the performance of the MOLS estimator

and alternative estimators by a Monte Carlo simulation. Finally, Section 4 concludes.

IFor a recent review, see Arellano (2003).



2 Setup and Main Results

We consider an AR(1) model given by
Yt = [+ pyr—1 + +uy t=1,...T (1)

where p is the parameter of interest with |p| < 1. We assume that u; ~ #idN(0,0?), and

Yo=p/(1—p)+ Z;iopju—j-
By first-differencing model (1), we have

Ayt = pAyt_l + Aut t= 2, ey T. (2)

The OLS estimator of this model is given by

Praots = Iy Zthz Ay 1Ay, _ { (3)
' Zthz Ay; Y

where Ty =T — 1.

The MOLS estimator suggested by Wansbeek and Knaap (1999) and reconsidered by
Hayakawa (2006a,b) takes the following form:

ﬁmols = 2ﬁfdols + L. (4>

It is easy to show that plimg_, . praes = (p — 1)/2, and plimyp_, o Pmeis = p-

The following theorem gives the formulas of the finite sample biases of pr4os and Prors-

Theorem 1. The expectations of praois, and Pmeis up to O(T™Y) are given by

Blosan) = “5+ [ o] ol 5)
Elpuos) = 0+ 75 +o(T7), ()

The proof is given in the appendix.

Remark 1 We find that as p approaches unity, the finite sample bias of p,,,s becomes
small. This is in contrast to the usual OLS estimator whose bias increases as p approaches
unity.?2 Figure 1 depicts the bias of Py, and P for the case of T = 25. From this figure,
we find that the bias of p,,0s 18 much smaller than that of p,, and tends to be small as p

approaches one. This supports the simulation results of Phillips and Han (2006).

2The form of the finite sample bias of the OLS estimator in (1), o, is given by E(pors)—p = —(1+3p)/T.
See Marriott and Pope (1954) and Tanaka (1983).



Remark 2 This result explains the reason why the bias of the MOLS estimator in the
estimation of dynamic panel data models with cross-section dependence is small when T is

not so large and p is close to one. For a detailed discussion, see Hayakawa (2006b).

3 Monte Carlo Simulation

In this section, we compare the performance of the MOLS estimator with those of the OLS
estimator and the recursive mean adjusting (RMA) estimator by So and Shin (1999), in
terms of the bias and inference.®> Observations are simulated from y, = 1 + py,_, + u; with
u; ~ 1dN(0,1) and y; ~ 4dN(1/(1 — p),1/(1 — p?)). We set T = 15,20, 25, 50, 100, 200,
and p = 0.5,0.9,0.95. The number of replications is 100,000. We computed pyis, Pmors, the

recursive mean adjusting estimator, p,,.., and bias-corrected versions of pys, Pmotss

~ Tﬁols + 1

Pis = T3 ")
~ (T - 1))6mols -1
Pmols T _9 . (8)

It is easy to verify that E(pes) = E(pmeis) = p + o(T™1). pois, and pes are useful in
bias reduction when we are just interested in the estimation of AR(1) models. However, in
some cases, they are not. For example, p,s and pos appear implicitly in the estimators of
dynamic panel data models with cross-section dependence. From Proposition 3 in Phillips
and Sul (2006), we find that p,s appears implicitly in the probability limit of the least
squares dummy variables estimator. In this case, we cannot use p,s. Similarly, as shown in
Hayakawa (2006b), pos appears implicitly in the MOLS estimator of dynamic panel data
models with cross-section dependence. Thus, in these cases, we cannot use pPois O Ppois-

The simulation results are summarized in Table 1. We computed mean (mean), the
root mean squared error (RMSE) and the empirical size of t-test for Hy : p = py with 5%
significance.

When we compare pos, Pmois; and prma, we find that pes and p,e have almost the

same bias in the case of p = 0.5. However, when p = 0.9,0.95, the bias of p,,,s is smallest

3Sul, Phillips, and Choi (2005, p.540-542) gives an intuitive reason why the RMA estimator has smaller
bias than the OLS estimator.



among the three estimators, especially when T is not so large. With regard to inference, the
empirical size of P, is very close to the nominal one in all cases, although those of p,;s and
Prma are not so close in the case of small 7. One drawback of p,,. is its variability. Since
the variance of P, is four times as large as that of pt4os, in terms of the RMSE, pr,05 does
not perform best. In other words, at a cost of efficiency, p,n0s gains precision with regard to
the bias.

When we compare all five estimators, we find that the bias of p,,4s is smallest in almost all
the cases, although both p,,,s and pys are unbiased up to O(T‘l). It might be conjectured
that this is because the third-order bias of p,s is not negligible when p is close to one. In
terms of inference, the empirical sizes of P05 and pqs are close to the nominal one in
almost all cases, although those of other estimators are not, especially when T' is small.
With regard to the RMSE, the RMSE of p,,.s is largest among the five estimators, although
its bias is smallest. Hence, as in the above case, p,..s has very a small bias at a cost of

efficiency.

4 Conclusion

In this paper, we derived the finite sample bias of the modified OLS estimator in the context
of a time series AR(1) model. From the formula of the finite sample bias, we found that as p
approaches unity, the bias becomes small, unlike the usual OLS estimator. This supported
the simulation results of Phillips and Han (2006) theoretically. This result was also useful in
explaining why the MOLS estimator performs well in the estimation of dynamic panel data
models with cross-section dependence even if T" is not so large. Simulation results showed
that although the RMSE of the MOLS estimator is larger than those of other alternative

estimators, in terms of the bias and inference, the MOLS estimator performs best.
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A Appendix

Proof of Theorem 1 We follow Marriott and Pope (1954). Note that E(X/Y’) can be
expanded up to O(T™!) as follows:*

. (X) E(X) {1  cou(X,Y) | var(Y)

% RO fEOE o) Y

- E(Y)

To derive the finite sample bias, we need to obtain E(Y?) and E(XY):

1 T 2 T 2 T 2
PO = e (zy> +<zys_2) +4(zyt_2yt_1)
t=2 t=2

t=2

T T T T
+2 (Z yz€2—2> ( yz€2—1> +—4 (Z yt2—2> <Z yt—Qyt—1>
=2 =2 =2 t=2

T T
o4 (z y> (z yy)
t=2 t=2

- A1+A2+4A3+2A4—4A5—4A6

o< o) (o) (B4 () )

t=2 t=2

() E) (o) )

4See, for example, Mood, Graybill and Boes (1974, p.181).




T 2
—2 Z ytzyt1>

= Bl—BQ—Bg+B4—B5—Bﬁ+B7—QBg+2Bg+QBlo+2Bll—2312

To calculate the expectations, we use the following result:®

By kYerksiYeskriom) = TPker(l + ngl) k., l,m>0

where r = o /(1 — p?)2. Using (10), we have

2r (1+ p?
A=Ay =Ay =By =Bs = —|—
1 2 4 2 6 T+Tg(1—p2>

1 4p%r
Ay = By =By = p*r + — 1+ p?
3 9 12 PT+TO(1_p2+(+P)T>

1 4
A5:A6:BIZB4=B5=BSZBM)ZPT+_< y )

T() ]_—p2
20 2
Bs = Br = p%r + pr<1+ )

From these results, we have

B = a0+ g 0D
R e (=)
var(y) = AP lp+3)

T 1+p
cov(X)Y) = _]fir ((p _11)_(52"‘ 2)) '

°See Marriott and Pope (1954), and Brockwell and Davis (1991, p.226-227).

(10)
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Therefore, it follows that

Blpan) = (3 ) =25+ [1- 1] +or. (15)

E(pmols) is also straightforwardly derived from (15).
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