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Abstract

The aim of the paper is to consider the problem of selecting the number of breaks in the mean
of a time series. Indeed, we prove analytically and show by a Monte Carlo study that some
model selection criteria will tend to choose a spuriously high number of structural breaks
when the process is trend-stationary without changes. The important question suggested by
our results is that of distinction between trend-stationary process and random walk when
modelling real data series.
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1 Introduction

The existence of structural change in statistical models acquires a fundamental importance in the
literature. In the context of determining the number of breaks using some model selection criteria,
Yao (1988), Yao and Au (1989) and Yin (1988) study the detection of mean-shifts using the Bayesian
Information Criterion. The most important contribution is that of Bai and Perron (1998) who
consider multiple break models estimated by least-squares and propose selection procedures based
on a sequence of tests to estimate consistently the number of structural changes. The usefulness
of these procedures is illustrated by several works in the literature such as Bai and Perron (2003),
and Jouini and Boutahar (2005).

When the data-generating process is a trend-stationary process without any structural change,
some model selection criteria have a tendency to estimate the maximum possible number of breaks
when we run a regression with mean-shifts. In this paper, we provide a mathematical proof for this
phenomenon and compare our theoretical results to those obtained by Nunes, Newbold and Kuan
(1996) who show that adopting the Bayesian information criterion when the generating process
is a random walk without breaks leads to an estimated number of breaks equal to the maximum
allowed. We present simulation evidence to confirm the theory and to produce additional insights.
While our paper borrows the idea of proving analytically some findings in the context of estimating
the number of breaks from Nunes, Newbold and Kuan (1996), ours is the first to consider multiple
criteria. Note that our findings provide useful insights since we can distinguish appropriately
between random walk and trend-stationary process when modelling real data series.

The remainder of the paper is organized as follows. The second section presents the model and
the estimation method. Section 3 recalls some model selection criteria. In section 4, we provide
the main theoretical result of the paper. Section 5 reports simulation experiments to support the
theoretical results. Concluding comments are provided in section 6. The proof of the Theorem is
given in Appendix A, and the simulation results in Appendix B.

Throughout this paper as a matter of notation, we let “[·]” denote integer part, “⇒” weak
convergence in the space D [0, 1] under the Skorohod metric (Pollard, 1984), and “a.s.→” convergence
almost surely.

2 The model and estimation method

Consider the following linear regression model of structural change with m breaks:

yt = z
0
tδj + ut, t = Tj−1 + 1, . . . , Tj , (1)

for j = 1, . . . ,m + 1, T0 = 0 and Tm+1 = T . yt is the observed dependent variable, zt ∈ Rq is the
vector of covariates, δj are the corresponding regression coefficients with δi 6= δi+1 (1 ≤ i ≤ m),
and ut is the disturbance. The break dates (T1, . . . , Tm) are explicitly treated as unknown and for

i = 1, . . . ,m, we have Ti = [λiT ] where 0 < λ1 < · · · < λm < 1. Let δ =
³
δ
0
1, δ

0
2, . . . , δ

0
m+1

´0
.

The estimation method is based on the ordinary least-squares (OLS) principle and proposed
by Bai and Perron (1998). The method first consists in estimating the regression coefficients
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δj by minimizing the sum of squared residuals
Pm+1

i=1

PTi
t=Ti−1+1 (yt − z0tδi)

2. Once the estimate

δ̂ (T1, . . . , Tm) is obtained, we substitute it in the objective function and denote the resulting sum of
squared residuals as ST (T1, . . . , Tm). The estimated break dates

³
T̂1, . . . , T̂m

´
are then determined

by minimizing ST (T1, . . . , Tm) over all partitions (T1, . . . , Tm) such that Ti − Ti−1 ≥ h.1. Thus,
the break point estimators are global minimizers of the objective function. Finally, the estimated
regression coefficients are such that δ̂ = δ̂

³
T̂1, . . . , T̂m

´
. In our Monte Carlo experiments, we use

the efficient algorithm developed in Bai and Perron (2003), based on the principle of dynamic
programming, to estimate the unknown parameters.

3 The model selection criteria

To detect the number of breaks, Yao (1988) suggests the use of the Bayesian Information Criterion
defined as

BIC (m) = ln
³
ST

³
T̂1, . . . , T̂m

´
/T
´
+ p∗ ln (T ) /T, (2)

where p∗ = (m+ 1) q + m is the number of unknown parameters. The author shows that, for
the change in mean model, m̂ is a consistent estimator of m0, the true number of breaks, provided
m0 ≤M withM a fixed upper bound form and the error term of the model is normally distributed.
Another criterion proposed by Yao and Au (1989) is defined as

Y IC (m) = ln
³
ST

³
T̂1, . . . , T̂m

´
/T
´
+mCT/T, (3)

where CT = 0.368T
0.7.2 Liu, Wu and Zidek (1997) propose a modified Schwarz’ criterion that takes

the form

MIC (m) = ln
³
ST

³
T̂1, . . . , T̂m

´
/ (T − p∗)

´
+ 0.299p∗ [ln (T )]2.1 /T. (4)

We remark that these criteria have not the same penalty term. Indeed, that of the criterion MIC
is heavier than those of the criteria BIC and YIC. As we will show in the next section, this affects
the results for all the processes. The estimated number of break dates m̂ is obtained by minimizing
the above-mentioned criteria given an upper bound M for m.

Perron (1997) carried out Monte Carlo simulations to study the behavior of the above-mentioned
information criteria in the context of selecting the number of break dates in the trend function of a
series in the presence of serial correlation. The criteria perform reasonably well when the errors are
not correlated but overestimate the number of changes when serial correlation is present. When
the errors are not correlated but a lagged dependent variable is present, the criterion BIC performs
badly when the autoregressive coefficient is large. On the other hand, the criterion MIC performs
better under the null hypothesis of structural stability but underestimates the number of breaks
when some are present. His results show that the conclusions of Nunes, Newbold and Kuan (1996)

1h is the minimal number of observations in each segment (h ≥ q, not depending on T ). From Bai and Perron
(2003), if tests for structural changes are required, then h must be set to [εT ] for some arbitrary small positive number
ε.

2Note that this sequence is proposed by Liu, Wu and Zidek (1997).
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don’t depend on the fact that the data-generating process is a random walk; even an AR(1) process
with a correlation degree smaller than one leads to an overestimation of the number of breaks.

4 A poor identification of the number of breaks

Finding a theoretical explanation for the overestimation was evoked by Bai (1998) who gives a
mathematical proof for the phenomenon that when the errors of a linear regression model without
any break are I (1), there is a tendency to estimate a break date in the middle of the sample. Thus,
unlike Bai (1998), our paper is concerned with the case of multiple breaks.

We define the sum of squared residuals

ST

³
T̂1, . . . , T̂m

´
= min

(T1,...,Tm)

"
TX
t=1

y2t

−
m+1X
i=1

 TiX
t=Ti−1+1

ytz
0
t

 TiX
t=Ti−1+1

ztz
0
t

−1 TiX
t=Ti−1+1

ztyt

 . (5)

Nunes, Newbold and Kuan (1996) show that for a random walk without changes, and when esti-
mating mean-shift (i.e. zt = 1) and trend-shift (i.e. zt = (1, t)

0) models, the criteria overestimate
the number of breaks. This conclusion is supported by the simulation results reported in Table 1.

Our contribution in this paper consists in providing a mathematical proof for the problem
of overestimation that appears when estimating a mean-shift model using data generated by a
trend-stationary process without any break:

yt = a+ bt+ ut, 1 ≤ t ≤ T, (6)

where a ∈ R, b ∈ R and ut ∼ i.i.d. N
¡
0, σ2u

¢
. The following Theorem indicates that the estimation

of a model with M breaks leads to the selection of a spurious number of changes (namely the
maximum permitted number) by the information criteria.

Theorem. Suppose that the data are generated according to the model ( 6 ) with b 6= 0 and that
we estimate a model with change in mean, i.e. zt = 1. Then, we have for T →∞

1.

ST

³
T̂1, . . . , T̂m

´
T 3

a.s.→ C (m) , (7)

where

C (m) = b2
µ
1

3
− 1
4
(1 + l (m))

¶
, (8)

and

l (m) = max
0<λ1<···<λm<1

m+1X
i=1

λiλi−1 (λi − λi−1) . (9)
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2. The function l (m) is such that l (1) = 1/4, l (2) = 8/27, and for any m ≥ 3

l (m) =

n
2
√
2
3 m3 + 2

¡
2−√2¢m2 +

³
5
√
2 +

√
2
3 − 8

´
m+ 6− 4√2

o
¡
2 +
√
2 (m− 1)¢3 .

Therefore l (m) < 1/3 for all m and hence C (m) > 0.

Proof: See Appendix A.

Thus, from the Theorem we conclude that ST
³
T̂1, . . . , T̂m

´
= Op

¡
T 3
¢
, which implies that for

any fixed m, only the first term in the criteria matters asymptotically since the penalty term goes
to 0 as the sample size T increases. Consequently, the criteria select the maximum permitted
number of breaks M since ST

³
T̂1, . . . , T̂m

´
is monotonically decreasing in m. In particular, the

criteria BIC and YIC will be minimized at m = M with percentages higher than those of the
criterion MIC. These two criteria suggest that a trend-stationary process is a series generated by
a stationary process with M structural breaks. This conclusion is supported by the simulation
results considered in Table 2 for the mean-shift model.

The fact that from Nunes, Newbold and Kuan (1996) ST
³
T̂1, . . . , T̂m

´
= Op

¡
T 2
¢
implies that

the magnitude of the sum of squared residuals is higher for the trend-stationary process than the
random walk. Consequently, the proportion of selecting the upper bound as estimate of the number
of breaks is higher for the former than the latter for all the criteria (see Tables 1 and 2 for the case
of mean-shifts).

5 Monte Carlo analysis

Based on Monte Carlo simulations we attempt to confirm the above-mentioned theoretical results.
h andM take value 5, the sample size is fixed at T = 150 and the disturbances {ut} are independent
and identically distributed standard normal. All the reported simulation results are based on 1000
replications.

Experiment 1. We consider an I (1) process without any structural change as a data-
generating process. The corresponding results are reported in Table 1. The results of the mean-shift
and trend-shift models are very similar for the criteria BIC and YIC. The estimator of the number
of break dates obtained by the criterion MIC has some distribution on the set {0, 1, . . . ,M} where
the frequency of selecting the upper bound M is the highest. The criteria BIC and YIC select the
maximum possible number of breaks on the overwhelming majority of occasions. These criteria
suggest that the random walk is a series generated by a stationary process with M break dates.
This bias towards the overestimation of the number of breaks is less severe for the criterion MIC
especially in the case of a change in trend model. Hence, a heavy penalty reduces the tendency of
choosing the upper bound as estimate of the number of changes.

Experiment 2. This experiment considers a series generated according to a trend-stationary
process. Our simulation experiment is carried out with a = 2.0 and b = 0.1. The results are
provided in Table 2. We first consider the case of change in mean. All the criteria perform badly in
the sense that they select the maximum permitted number of breaks m = 5 (100% of the time for
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the criteria BIC and YIC and nearly 100% of the time for the criterion MIC). As for the random
walk, the criteria BIC and YIC have higher tendency to overestimate the number of changes than
the criterion MIC. As the theory predicts, we remark that the frequency of selecting 5 break points
is higher for the trend-stationary process than the random walk (see Tables 1 and 2 for the case
of mean-shifts). The results show that the conclusions of Nunes, Newbold and Kuan (1996) don’t
depend on the fact that the data-generating process is an I (1) process; even a trend-stationary
process leads to an overestimation of the number of breaks.

For the trend-shift model, the information criteria correctly select the true number of breaks,
namely 100% of the time for the criterion MIC, 98% for the BIC and 91% for the YIC.

6 Conclusion

This paper has discussed the problem of selecting the number of breaks using some model selection
criteria. We have remarked that for some data-generating processes without any break, the esti-
mation of a model with structural change results in the appearance of a spurious number of breaks.
Our results are simply rigorous proofs of this fact. The tendency towards the overestimation of the
number of changes is less severe when a heavy penalty is used. Our results, together with those
of Nunes, Newbold and Kuan (1996), suggest that choosing a random walk or a trend-stationary
process to model real data series can also be done based on the study of structural change models.
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Appendix A: Proof of the Theorem

Proof of Part 1. We have for zt = 1

ST

³
T̂1, . . . , T̂m

´
= min
(T1,...,Tm)


TX
t=1

(a+ bt+ ut)
2 −

m+1X
i=1

³PTi
t=Ti−1+1 (a+ bt+ ut)

´2
Ti − Ti−1

 . (10)

We have
¡
1/T 3

¢PT
t=1 u

2
t
a.s.→ 0 and

¡
1/T 3

¢PT
t=1 ut

a.s.→ 0 since by the strong law of large numbers
(1/T )

PT
t=1 u

2
t

a.s.→ E
¡
u21
¢
= σ2u and (1/T )

PT
t=1 ut

a.s.→ E (u1) = 0.
PT

t=1 tut is a martingale
transform, then by applying the Lemma 1 of Lai and Wei (1982), we obtain¯̄̄̄

¯
TX
t=1

tut

¯̄̄̄
¯
2

= O

Ã
TX
t=1

t2 ln

Ã
TX
t=1

t2

!!
= O

¡
T 3 ln (T )

¢
, almost surely,

consequently ¯̄̄̄
¯ 1T 3

TX
t=1

tut

¯̄̄̄
¯ = O

Ã
(ln (T ))1/2

T 3/2

!
, almost surely,

and then

1

T 3

TX
t=1

tut
a.s.→ 0.

Therefore

TX
t=1

(a+ bt+ ut)
2 =

b2

3
T 3 + o

¡
T 3
¢
, almost surely. (11)

Using the same arguments as above and since Ti = [λiT ], we have with probability one

m+1X
i=1

³PTi
t=Ti−1+1 (a+ bt+ ut)

´2
Ti − Ti−1

=
b2

4
T 3

m+1X
i=1

(λi + λi−1)2 (λi − λi−1) + o
¡
T 3
¢
. (12)

From (10)—(12), we deduce that

ST

³
T̂1, . . . , T̂m

´
= min
(λ1,...,λm)

(
b2

3
T 3 − b2

4
T 3

m+1X
i=1

(λi + λi−1)2 (λi − λi−1) + o
¡
T 3
¢)

.

Then
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ST

³
T̂1, . . . , T̂m

´
T 3

a.s.→ b2

Ã
1

3
− 1
4

max
0<λ1<···<λm<1

m+1X
i=1

(λi + λi−1)2 (λi − λi−1)

!

= b2

Ã
1

3
− 1
4

Ã
1 + max

0<λ1<···<λm<1

m+1X
i=1

λiλi−1 (λi − λi−1)

!!
.

This proves the first part of the Theorem.

Proof of Part 2. We have

l (m) = max
0<λ1<···<λm<1

m+1X
i=1

λiλi−1 (λi − λi−1) = max
0<λ1<···<λm<1

L (λ1, . . . , λm) .

We easily show that l (1) = 1/4 < 1/3 and l (2) = 8/27 < 1/3. For m ≥ 3, we have the following
relations: λ2 = 2λ1, λ3 =

¡
2 +
√
2
¢
λ1, . . . , λm =

¡
2 + (m− 2)√2¢λ1. It follows that λi − λi−1 =√

2λ1 for i = 3, . . . ,m. Note that we have

∂L

∂λm
= λm−1 (λm − λm−1) + λmλm−1 + 1− 2λm = 0.

Substituting λm−1 and λm, we obtain

λ1 =
1

2 + (m− 1)√2 or λ1 =
1

2 + (m− 3)√2
The second solution leads to λm−1 = 1, it is then not considered. We have

l (m) = λ2λ1 (λ2 − λ1) +
mX
i=3

λiλi−1 (λi − λi−1) + λm (1− λm)

= 2λ31 +
√
2λ31

mX
i=3

³
2 + (i− 2)

√
2
´³
2 + (i− 3)

√
2
´

+
³
2 + (m− 2)

√
2
´
λ1

³
1−

³
2 + (m− 2)

√
2
´
λ1

´
.

Substituting λ1, we obtain

l (m) =

(
2
√
2

3
m3 + 2

³
2−
√
2
´
m2 +

Ã
5
√
2 +

√
2

3
− 8
!
m+ 6− 4

√
2

)
/
³
2 +
√
2 (m− 1)

´3
,

and then

l (m) ∈
"
12
√
2 + 18¡

2 + 2
√
2
¢3 , 13

"
, ∀ m ≥ 3.

It follows that l (m) < 1/3 for all m, which implies that C (m) > 0 for b 6= 0. This proves the
second part of the Theorem.
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Appendix B: Simulation Results

Table 1. Percentage of breaks selected

by the information criteria

Mean-shifts Trend-shifts

m̂ BIC YIC MIC BIC YIC MIC

0 0.0 0.0 0.0 0.0 0.0 0.1

1 0.0 0.0 0.2 0.0 0.0 1.3

2 0.0 0.0 1.2 0.0 0.0 7.3

3 0.0 0.1 3.8 0.1 0.0 18.4

4 0.8 1.6 13.4 1.1 0.3 26.6

5 99.2 98.3 81.4 98.8 99.7 46.3

Table 2. Percentage of breaks selected

by the information criteria

Mean-shifts Trend-shifts

m̂ BIC YIC MIC BIC YIC MIC

0 0.0 0.0 0.0 98.1 90.5 100.0

1 0.0 0.0 0.0 1.7 7.3 0.0

2 0.0 0.0 0.0 0.2 1.9 0.0

3 0.0 0.0 0.0 0.0 0.3 0.0

4 0.0 0.1 7.5 0.0 0.0 0.0

5 100.0 99.9 92.5 0.0 0.0 0.0
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