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Abstract

This paper presents the results of a Monte Carlo comparison of feasible GLS estimators of
the trend parameter in the linear trend plus noise model, where the noise component may or
may not be a unit root process. We include an FGLS estimator that estimates the noise
component using a median−unbiased estimator.
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1. Introduction 

 
Many economic time series display a clear tendency to grow over time. However, 

quantifying the growth path of a series is complicated by the fact that most trending series 
behave somewhat erratically, seemingly subject to the transitory and/or permanent effects of 
external shocks. In other words, the observed time series is composed of  a long-run (i.e., trend 
or permanent) component and a short-run (i.e., noise or transitory) component, which must 
somehow be untangled in order to quantify the trend behavior of the series.  

This paper provides a Monte Carlo comparison of the precision of several closely-related 
estimators of the average growth rate of a time series that has been generated by the widely used 
“trend plus noise” model. In particular, it considers the implications of recent developments in 
estimating the noise component for estimation of the average growth rate of the series. We will 
show that more precise estimators of the parameters of the noise component do not necessarily 
translate into more precise estimators of the parameters of the trend component. That is, over a 
certain (and practically important) range of parameter values, there may be a tradeoff between 
the precision of estimating the parameters of the two components of the model. The tradeoff we 
highlight has not been previously recognized in the literature. 

Let Yt denote the series of interest or, as if often the case in practice, the logarithm of the 
series.  According to the (linear form of the) trend plus noise model, Yt is assumed to be 
generated as follows:  

Yt = a + bt + yt                     (1) 
where 

yt  =  ρyt-1  + εt                            (2)  
and εt is a white noise (i.e., zero-mean, serially uncorrelated, and constant variance) process. 
Note that, for expositional convenience and in anticipation of our Monte Carlo analysis, we are 
assuming that the noise component, yt, is an AR(1) process rather than a more general AR(p) or 
ARMA(p,q) process. 

Two important cases are typically distinguished in practice. If, -1 < ρ < 1, the noise 
component yt is stationary and Yt is trend stationary. That is, Yt, which is the sum of a 
deterministic linear trend (a + bt) and a stationary component (yt), grows linearly with time while 
being subject to external shocks whose effects are purely transitory.  If ρ = 1, the noise 
component yt is nonstationary, although it is stationary in its first-differenced form. In this case, 
Yt is nonstationary but its first-differenced form is stationary and, therefore, Yt is difference 
stationary. In both cases, the parameter b is the average growth of Yt, i.e., it is the slope of the 
trend path. However, in the difference stationary case the level or intercept of the trend line will 
be stochastically shifting over time, reflecting the permanent effects of the external shocks, so 
that Yt has a stochastic trend.  
 If  ρ ε (-1,1), the Grenander and Rosenblatt (1957) result implies that the ordinary least 
squares (OLS) estimator of (a,b) in (1) is asymptotically equivalent to the generalized least 
squares (GLS) estimator of (a,b) using (1) and (2).  If ρ = 1, the parameter a is not identified and 
although the OLS estimator of b is consistent, it is not asymptotically efficient. In this case, the 
sample mean of ∆Yt is an asymptotically efficient estimator of b, being equivalent to the GLS 
estimator.  

Of course, in practice we do not know a priori whether ρ is equal to or less than one. The 
main focus of this paper is estimating the parameter b, the average growth of Yt (or, the average 



 

growth rate of the original series if Yt is its logged form), when it is not known, a priori, whether 
Yt is a trend stationary or difference stationary time series.  
 The remainder of the paper is organized as follows. Section 2 provides a brief literature 
regarding estimation of the trend-plus-noise model and median-unbiased estimators. Section 3 
provides the setup and results of our Monte Carlo experiment. Section 4 provides an explanation 
of the results. Concluding comments are given in Section 5. 

 
2. Literature Review 

 
Canjels and Watson (1997) recently studied this problem. They used standard and local-to-

unity asymptotic distribution theory, along with Monte Carlo simulations, to evaluate the OLS 
estimator, the first-difference estimator, and several feasible GLS estimators of b when the 
researcher does not know ρ or commit a priori to either the trend-stationary or difference-
stationary representation of yt. They conclude that the feasible Prais-Winsten (FPW) estimator of 
b is the preferred estimator.  

The FPW estimator proceeds in two steps.  In the first step, the OLS residuals from (1) are fit 
to (2) to obtain an estimate of ρ. In the second step, the full GLS estimator is applied to (1) using 
the estimated ρ in place of  its actual value.  

Typically, in the first step of the FPW estimator, the residuals from (1) are fit to (2) using the 
OLS estimator. Although the OLS estimator of ρ is consistent for any ρ in the parameter space, it 
is downward-biased with respect to both the mean and median. Further, the bias is of the same 
order as the standard deviation of the estimator for values of ρ close to or equal to one.  

Andrews (1993) proposed using the median-unbiased principle (i.e., choose an estimator 
such that the median of the distribution of the estimator is equal to ρ) to construct an improved 
estimator of ρ for model (1)-(2) when the errors are normally distributed. Andrews and Chen 
(1994) extended the estimator to obtain a nearly median-unbiased estimator when the errors are 
not normally distributed (and the order of the autoregressive component is greater than one). 
Estimators of ρ which are nearly median-unbiased have also been suggested by Rudebusch 
(1992), Fuller (1996), Roy and Fuller (2001) and Roy, Falk, and Fuller (2004).  
 These (approximately) median-unbiased estimators of ρ improve upon the OLS estimator of 
ρ for values of ρ close to or equal to one by reducing the (mean and median) bias and the mean-
squared error of the estimator. Table I compares the simulated  medians, means, and mean 
squared-errors of the distributions of the ordinary least squares estimator and Andrews’s (1993) 
exact median unbiased estimator of ρ for sample size 100 . Even for values of ρ substantially less 
than one, where the bias in the OLS estimator is quite small, the median unbiased estimator 
seems to perform at least as well as the OLS estimator.  

In light of these results, it would seem that the finite-sample performance of the FPW 
estimator of the trend coefficient b in (1) could be improved by using a median-unbiased 
estimator of ρ in place of the OLS estimator in the final step of the FPW procedure. This view 
seems to be implicit in Andrews and Chen (1994). Although they do not report a direct 
comparison between their estimator of b and the estimator of b based upon the OLS estimator of 
ρ, they do report simulation comparisons of estimators of α and β in the following model that is 
an alternative representation of (1)-(2): 

 Yt  =  α + βt + ρYt-1 +   εt.                 (3) 
The parameters α and β in  (3) are related to the parameters in (1)-(2) according to 
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α = a(1-ρ)+ bρ and β = b(1-ρ). They conclude that the OLS estimator of β conditioned upon the 
estimate of ρ  derived from their median-unbiased estimation procedure, is more accurate (in the 
mean-square sense) than the unconditional OLS estimator of β from (3). 
 

 
 

3.  Monte Carlo Experiment 
 
 We conducted a simulation experiment to investigate the finite-sample performance of the 
FPW estimator of the trend parameter b, using an exact median unbiased estimator of ρ. Five 
thousand realizations of Y1,…,Y100 were generated by (1)-(2) with a = b = 0 and the εt’s 
independently drawn from the standard normal distribution. The initial value y0 was set equal to 
zero when ρ = 1. Otherwise, y0 was determined by drawing from its stationary distribution.  
 For each simulated realization of the y’s, the following estimators of b were constructed: 

1. Apply the OLS estimator to (1) to obtain $b OLS. 
2. Apply the exact GLS estimator to (1)-(2) to obtain $b GLS. 
3. Apply the FPW estimator to (1)-(2) using the OLS estimator of ρ to obtain 

$b FPW( $ρ OLS). 
4. Apply the FPW estimator to (1)-(2) using Andrews’s exact median-unbiased 

estimator of ρ to obtain $b FPW( $ρ MU). 
The results are presented in Table II.  

Notice that for each value of ρ considered, the MSE of $b OLS is greater than the MSE of 
$b GLS. The MSE’s of the two feasible Prais-Winsten estimators, $b FPW( $ρ OLS) and $b FPW( $ρ MU) 

always fall between MSE( $b OLS) and MSE( $b GLS). For ρ equal to 1, .99, and .975, the MSE of 
$b FPW( $ρ OLS) is greater than the MSE of $b FPW( $ρ MU) while the MSE of $b FPW( $ρ OLS) is less than 

the MSE of $b FPW( $ρ MU) for ρ equal to .95, .90, .85, and .80. The MSE’s of the four estimators 
are about equal to one another for smaller values of ρ. 

Therefore, with respect to estimating the trend parameter b in model  (1)-(2), we draw the 
following conclusions. First, as is well known, the feasible Prais-Winsten estimator outperforms 
the OLS estimator.  But, second, using a more precise (in the MSE sense) estimator of ρ is not 
necessarily desirable. In particular, the FPW estimator of b based on the OLS estimator of ρ has 
a smaller MSE than the FPW estimator of b based on Andrews’s (1993) median-unbiased 
estimator of ρ for an intermediate range of values of ρ. This occurs even though the latter is a 
better (with respect to mean bias, median bias, and MSE) estimator of ρ and the parameter β in 
(3).  

 
4.  Discussion 

 We propose the following heuristic argument to help explain these results. Let $ρ  denote the 
estimator of ρ obtained from the detrended data, , where and  are the OLS 
estimators of a and b, respectively. In addition, for ease of calculation, let the time index run 
from t = 0 through t = T.  

$ $ $y Y a bt t= − − t $a $b
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The FGLS estimator of b, , is the ordinary least squares estimator of b from the 
regression: 

$bFGLS
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where t = 0.5(T+1) and a a bt* .= +  The error in estimation in the FGLS estimator of b is: 
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Most of the common estimators of ρ are even functions of the εt’s as they are based on the 
sufficient statistics  and , which are even functions of the innovations. 

Therefore,  is typically an odd function of the ε
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$bFGLS t’s. So for symmetrically distributed εt’s the 
FGLS estimator of b will be unbiased and the MSE will be solely due to the variance of the 
estimator. 
 Now, consider the estimation error more carefully. Ignoring smaller order terms, we obtain 
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  Note that the term  is increasing in the estimation 

error  while the term  is generally decreasing in the 

estimation error since  and  are positively correlated random variables..  Put 

slightly differently, suppose we restrict our attention to samples for which 
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5.   Concluding Remarks 

There have been important recent developments in the estimation of the parameters of the 
noise component of the linear trend plus noise model. In particular, a class of exact or near-
median unbiased estimators of the autoregressive component of this model has been developed. 
These estimators reduce both the median and mean bias as well as the mean-squared error of the 
estimator in comparison to the OLS estimator over the entire parameter space, including the unit 
root extreme. It might then be expected that condition the feasible GLS estimator of the trend 
parameter characterizing the average growth rate of the series on median-unbiased estimates of 
the autoregressive parameters would be preferred to the feasible GLS estimator conditioning on 
the OLS esitmator of the autoregressive parameters. Our Monte Carlo results and subsequent 
discussion suggest otherwise. For a practically important range of values for the autoregressive 
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parameters, the feasible GLS estimator of the average growth constructed using the OLS 
estimator of the autoregressive parameters actually has a lower mean-squared error than the 
feasible GLS estimator constructed based upon the median-unbiased estimator of the 
autoregressive parameters. 

We conclude with the following remarks. First, note that both estimators of b,                                                 
$b FPW( $ρ OLS)  and $b FPW( $ρ MU), are asymptotically efficient so that the issue we are raising is 

strictly a finite sample concern. Second, note that the relatively poor performance of $b FPW( $ρ MU) 
occurs when ρ is in a neighborhood bounded away from unity so that local-to-unity asymptotic 
theory will not be helpful here. Third, note that this issue will arise with any of the recently 
proposed median-unbiased estimators of ρ so that it is not specific to Andrews’s (1993) 
estimator, which is used here only as an illustrative example. 
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TABLE I 
 

Empirical Properties of the OLS and Median Unbiased Estimators  
of the AR Coefficient ρ in the AR(1) Model with Trend (T=100) 

 
 
 

Median of: Mean of: 100 x MSE of:  
ρ $ρOLS  $ρMU  $ρOLS  $ρMU  $ρOLS  $ρMU  
1 0.910 0.999 0.900 0.959 1.33 0.480 

0.98 0.904 0.980 0.894 0.955 1.07 0.404 
0.95 0.885 0.951 0.875 0.938 0.910 0.435 
0.90 0.844 0.900 0.834 0.892 0.847 0.525 
0.80 0.751 0.800 0.744 0.793 0.823 0.578 
0.70 0.654 0.698 0.648 0.692 0.914 0.710 
0.60 0.560 0.600 0.555 0.594 0.925 0.788 
0.40 0.463 0.399 0.363 0.395 1.02 0.975 
0.20 0.174 0.200 0.172 0.200 1.05 1.05 
0.00 -0.020 0.000 -0.020 0.000 1.01 1.05 

 
 

Notes: 
$ρOLS  = OLS estimator and $ρMU = Andrews’s (1993) median unbiased estimator. 

 
For each ρ, the results are derived from 10,000 samples of size 100 generated by model (1)-(2) 
with k = 1, a = b = 0, and εt ~ N(0,1). 
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TABLE II 
 

1000 x  MSE of Estimators of the Trend Coefficient b 
in the Linear Trend Model with AR(1) Errors 

 
 

 
      ρ  

 
         $bOLS

 
      $ ( $ )bFPW OLSρ

 
          $ ( $ )bFPW MUρ

 
        $bGLS

 
 
      1 
 

 
        11.75 

 
        10.44 

 
        10.09 

 
      9.950 

 
    0.99 
 

 
        8.673 

 
       7.409 

 
        7.120                   

 
      6.956 

 
   0.975 
 

 
        5.004 

 
      4.173 

 
        4.027 

 
      3.864 

 
    0.95 
 

 
       2.497 

 
      2.097 

 
        2.139 

 
      2.004 

 
    0.90 
 

 
       0.870 

 
      0.749 

 
        0.805  

 
      0.732 

 
    0.85 
 

 
       0.436 

 
      0.393 

 
       0.405 

 
      0.386 

 
    0.80 
 

 
       0.254 

 
     0.232 

 
       0.235 

 
     0.229 
 

 
    0.50 
 

 
       0.045 

 
    0.044 

 
       0.044 

 
     0.044 

 
    0.30  
   

 
       0.023 

 
   0.023 

 
       0.023 

 
     0.023 

 
 
Note:  = OLS estimator of b,  = Prais-Winsten estimator of b using the OLS 

estimator of  ρ,  = Prais-Winsten estimator of b using Andrews’s (1993) 

median-unbiased estimator of ρ,  = GLS estimator of b. 

$bOLS
$ ( $ )bFPW OLSρ

$ ( $ )bFPW MUρ
$bGLS
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