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Abstract

In this paper, I demonstrate that an expanding variety model of endogenous growth with
temporary monopoly power exhibits the indeterminacy of equilibrium paths. This implies the
existence of a global range of initial growth rates for any initial level of the state variable.

I am grateful to Taro Akiyama, Keiichi Koda, Etsuro Shioji, and Makoto Yano for their helpful comments. Of course, all
remaining errors are mine.
Citation: Furukawa, Yuichi, (2007) "Indeterminacy in a variety expansion model of endogenous growth." Economics
Bulletin, Vol. 4, No. 18 pp. 1-7
Submitted: September 6, 2005.  Accepted: May 22, 2007.
URL: http://economicsbulletin.vanderbilt.edu/2007/volume4/EB-05D90003A.pdf

http://economicsbulletin.vanderbilt.edu/2007/volume4/EB-05D90003A.pdf


1 Introduction

Many studies, beginning with Benhabib and Farmer (1994) and Boldrin and Rustichini

(1994), have shown that a large class of endogenous growth models can exhibit the

indeterminacy of equilibrium paths near a balanced growth path (BGP).

In this study, I construct a variety expansion model of endogenous growth in which

the indeterminacy of equilibrium paths can emerge. The present model differs from that

of Grossman and Helpman (1991, Ch. 3.2), who assume permanent monopoly power,

only in that the innovators of new varieties enjoy a one-period monopoly. This paper

shows that a minor extension to the Grossman–Helpman model implies a substantial

change in the dynamic behavior of the economy.

In “standard” variety-based models with knowledge externalities, 1 one-dimensional

dynamic systems have a unique and unstable steady state, which implies that the econ-

omy always follows the BGP. In the model presented below, the system is globally

stable and there are many paths that are consistent with the transversality condition.

Related papers by Deneckere and Judd (1992), Gale (1996), and Matsuyama (1999,

2001) develop innovation cycle models with temporary monopoly power. However,

these models do not exhibit the indeterminacy of equilibrium paths, and, thus, cannot

explain sunspot phenomena, which are driven by changes in expectations.

The outline of the paper is as follows. The following section presents the basic

model and the main result is described in Section 3. Section 4 compares the current

model with existing ones, and Section 5 concludes the paper.

2 The Model

Time is discrete and extends to infinity. This model differs from that of Grossman and

Helpman (1991, Ch. 3.2) only in the temporary nature of the innovator’s monopoly. In

the economy, households supply N units of labor inelastically and consume the final

good, which is taken as the numeraire. The maximization problem can be written as

max
�Ct�∞

t�0��At�∞
t�1

∞

∑
t�0

β t lnCt ,

subject to At�1 �Ct � �1� rt�At �wtN ,

where β � �0�1� denotes the rate of time preference, At denotes the household’s stock

of assets from t � 1 to t, which comprises shares of R&D firms, rt denotes the in-

terest factor from t � 1 to t, and wt denotes wage income. The Euler equation and

1See Romer (1990), Grossman and Helpman (1991), and Rivera-Batiz and Romer (1991).
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the transversality condition characterize the solution to this maximization problem as

follows:

Ct�1

Ct
� β �1� rt�1���t � 0 , (1)

lim
T�∞

β T AT�1

CT
� 0 . (2)

The production function in the final-goods sector is

Ct �

�� nt

0
xt� j�

σ�1
σ d j

� σ
σ�1

,

where xt� j� denotes the amount of variety i used in the final-goods sector, and the

elasticity of substitution between each pair of inputs is equal to σ � 1. At any period,

only a subset of differentiated inputs, �0�nt � is available to the economy. It follows that,

in each sector, total factor productivity increases with the range, n. Cost minimization

implies the following demand function:

xt� j� �
Ct

pσ
t
� nt

0 pt� j�1�σ d j
,

where pt� j� is the price of the intermediate good indexed by j. Note that the price

elasticity is σ for all j. Profit maximization ensures that the marginal cost must equal

unity, which implies the following condition:

wt � �nt�1�1� σ̂gt��
1

σ�1 . (3)

This equation is related to the determination of the initial growth rate, as explained in

the next section.

The demand side of the model and the structure of final production, as described

above, are identical to those of Grossman and Helpman (1991, Ch. 3.2). There is

only one departure from the Grossman and Helpman model. This is related to the

structure of the innovation sector. I introduce temporary monopoly power into the

model, whereas Grossman and Helpman assume permanent monopoly power. Due to

the temporary nature of the monopoly, the “old” intermediates, �0�n t�1� are supplied

competitively, whereas the “new” intermediates, �nt�1�nt �, are supplied monopolisti-

cally. Assuming that producing a unit of intermediate goods requires one unit of labor,

the price of old intermediates is pt � wt � � j � �0�nt�1� and the new intermediates are

priced at σwt
σ�1 . Thus, denoting the growth rate of varieties by gt � �nt�nt�1��nt�1, the

demand function for machine j is

xt� j� �

��
�

xc
t �

Ct
wtnt�1�1�σ̂gt�

, if j � �0�nt�1�

xm
t �

� σ
σ�1 �

�σ
Ct

wtnt�1�1�σ̂gt�
, if j � �nt�1�nt �

, (4)
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where σ̂ �
� σ

σ�1

�1�σ
. This equation implies the profit function

πt �
wtxm

t

σ �1
�

�σ �1�σ�1Ct

σσ nt�1 �1� σ̂gt�
. (5)

In summary, the present model is almost identical to existing models in the liter-

ature. However, unlike in Grossman and Helpman (1991, Ch. 3.2), the innovator has

only temporary monopoly power. Unlike in Matsuyama (1999), the savings rate is en-

dogenously determined by the intertemporal optimization of an infinitely lived agent.

Again, unlike in Matsuyama (2001), there is no capital accumulation, and the constant

elasticity of substitution (CES) specification is assumed for final production.

3 Equilibrium

The previous section described the basic framework. In this section, I close the model

by using two equilibrium conditions.

Suppose that innovating new varieties at period t incurs start-up costs of a RD�nt�1

units of labor per variety in the previous period.2 Using (1) and (5), the free-entry

condition, πt��1�rt�� aRDwt�1�nt�1, and the labor-market clearing condition ensures

that

Ct

wt

�
� aRDσ σ

β �σ�1�σ�1 �1� σ̂gt�1� if gt�1 � 0

� aRDσ σ

β �σ�1�σ�1 if gt�1 � 0
, (6)

N � �nt �nt�1�x
m
t �nt�1xc

t �aRDgt�1 . (7)

Then, from (4), (5), (6), and (7), the following law of motion can be derived:

gt�1 �

��
�

N�η f �gt �
aRD�σ̂η f �gt�

if N � η

0 if N � η
, (8)

where

f �g� �
1�

� σ
σ�1

��σ
gt

1� σ̂gt
,

η �
aRDσσ

β �σ �1�σ�1 ,

and f � � 0 and f �� � 0 hold. Thus, the following equation is derived:

g�t�1 � max

�
�η�aRD � σ̂N� f ��gt�

�aRD � σ̂η f �gt ��2 � 0

�
� 0 ,

g��t�1 � 0 .

2Note that I adopt the knowledge-driven specification of Rivera-Batiz and Romer (1991).
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As shown in figure 1, the one-dimensional system has a unique and globally stable

steady state.3 In (3), g0 is not given; only n�1 is given. Hence, for any n�1, many

equilibrium paths can satisfy both the law of motion (8) and the transversality condi-

tion (2).4 Hence, the initial growth rates are globally indeterminate. The following

proposition summarizes the preceding argument.

Proposition 1 A variety expansion model of endogenous growth that incorporates

temporary monopoly profits for innovators exhibits the indeterminacy of initial growth

rates. This implies that, for any initial values of the state variable, n�1, a global range

of initial growth rates are consistent with both the law of motion and the transversality

condition.

Along with figure 1, this proposition states that the indeterminacy of initial growth

rates also arises in the local dynamics. It is worth pointing out that local indeterminacy

implies that sunspot phenomena can emerge in the neighborhood of a BGP. Thus, the

economy can fluctuate in the neighborhood of the steady state. 5

The model described in this paper is almost identical to those of Grossman and

Helpman (1991, Ch. 3.2) and Matsuyama (1999, 2001). A minor change made to

these models substantially changes the dynamic behavior of the economy. In Gross-

man and Helpman (1991), as is well known, the economy follows a unique BGP after

starting from any initial number of varieties, and there are no transitional dynamics.

In Matsuyama (1999, 2001), the equilibrium path can be locally determined. 6 Unlike

existing growth models with a similar structure, the model of this paper exhibits local

indeterminacy.

4 Temporary versus Permanent Monopoly

In this section, I compare my model with that of Grossman and Helpman (1991, Ch.

3.2) to explain why incorporating temporary, rather than permanent, monopoly has

such a pronounced effect on the dynamic behavior of the economy.

Innovators finance the start-up costs in the stock market and their profits are paid

out to shareholders as dividends. I introduce a new variable, V GH
t , which denotes

the stock market price of the innovator who invents a new variety in period t, in the

3In this context, I assume that N � η . This ensures that the economy inherits a sufficiently large labor

supply (or sufficiently small start-up costs of R&D) to enable it to grow: that is, gt�1 � 0 for any gt � 0.
4It is easy to verify, by using AT�1 � �nT�1 � nT �πT , that the transversality condition (2) is always

satisfied.
5See Benhabib and Farmer (1999) for details.
6Matsuyama (2001) does not rule out the possibility of global indeterminacy.
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context of the model of Grossman and Helpman (1991, Ch. 3.2). Because the patent is

protected forever in the Grossman and Helpman model, the price is

V GH
t �

πt

1� rt
�

πt�1

�1� rt��1� rt�1�
� � � � , (9)

which is the present discounted value of its profit stream from period t onwards. Denot-

ing by Vt the market value of the innovator in the model yields the following expression:

Vt �
πt

1� rt
. (10)

Equation (9) and (10) can be rewritten as

rtV
GH
t � πt ��VGH

t�1 �VGH
t � ,

rtVt � πt �Vt .

Clearly, while shareholders in the Grossman and Helpman model enjoy not only div-

idends, but also experience capital gains (or losses), V GH
t�1 �VGH

t , those in the current

model enjoy only one-period dividends. In other words, innovators’ stock market val-

ues are positive for only one period. Thus, the Grossman and Helpman model predicts

potential price bubbles. This implies that the dynamic system can be unstable: the price

of stocks continues to change when the initial price level is off the BGP. Therefore, in

the Grossman and Helpman model, the transversality condition uniquely determines

the dynamic paths that are on the BGP by excluding bubble solutions.

However, the dynamic system of this model is not determined by the stock market

condition, but by the labor market condition (7). In addition, because positive stock

market values for innovators are eliminated after one period, shareholders do not expe-

rience capital gains (or losses). Hence, it may seem that this model does not allow the

possibility of price bubbles. This implies the global stability of the dynamic equation

(8), which generates the indeterminacy of equilibrium dynamic paths.

5 Conclusion

In this paper, I have shown that a minor extension to the variety expansion model of

Grossman and Helpman dramatically changes the predicted dynamic behavior of the

economy. More precisely, I made the additional assumption that innovators’ profits are

temporary. That is, an innovator who invents a new intermediate good enjoys monopoly

profits only temporarily. The one-dimensional dynamic system derived from the model

of this paper has a unique steady state, which is globally stable. This contrasts with

similar existing models. For any initial value of a state variable, many initial growth

rates are consistent with both the law of motion and the transversality condition, Hence,

there is indeterminacy in this sense.
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Figure 1: A unique and globally stable steady state
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